Suppr超能文献

利用人工智能增强心电图技术在心脏重症监护病房患者中识别左心室收缩功能障碍。

Left ventricular systolic dysfunction identification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients.

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, United States of America.

Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America.

出版信息

Int J Cardiol. 2021 Mar 1;326:114-123. doi: 10.1016/j.ijcard.2020.10.074. Epub 2020 Nov 2.

Abstract

BACKGROUND

An artificial intelligence-augmented electrocardiogram (AI-ECG) can identify left ventricular systolic dysfunction (LVSD). We examined the accuracy of AI ECG for identification of LVSD (defined as LVEF ≤40% by transthoracic echocardiogram [TTE]) in cardiac intensive care unit (CICU) patients.

METHOD

We included unique Mayo Clinic CICU patients admitted from 2007 to 2018 who underwent AI-ECG and TTE within 7 days, at least one of which was during hospitalization. Discrimination of the AI-ECG for LVSD was determined using receiver-operator characteristic curve (AUC) values.

RESULTS

We included 5680 patients with a mean age of 68 ± 15 years (37% females). Acute coronary syndrome (ACS) was present in 55%. LVSD was present in 34% of patients (mean LVEF 48 ± 16%). The AI-ECG had an AUC of 0.83 (95% confidence interval 0.82-0.84) for discrimination of LVSD. Using the optimal cut-off, the AI-ECG had 73%, specificity 78%, negative predictive value 85% and overall accuracy 76% for LVSD. AUC values were higher for patients aged <70 years (0.85 versus 0.80), males (0.84 versus 0.79), patients without ACS (0.86 versus 0.80), and patients who did not undergo revascularization (0.84 versus 0.80).

CONCLUSIONS

The AI-ECG algorithm had very good discrimination for LVSD in this critically-ill CICU cohort with a high prevalence of LVSD. Performance was better in younger male patients and those without ACS, highlighting those CICU patients in whom screening for LVSD using AI ECG may be more effective. The AI-ECG might potentially be useful for identification of LVSD in resource-limited settings when TTE is unavailable.

摘要

背景

人工智能增强心电图(AI-ECG)可识别左心室收缩功能障碍(LVSD)。我们检查了 AI 心电图在心脏重症监护病房(CICU)患者中识别 LVSD(通过经胸超声心动图 [TTE] 定义为 LVEF≤40%)的准确性。

方法

我们纳入了 2007 年至 2018 年期间在梅奥诊所 CICU 住院且在 7 天内接受 AI-ECG 和 TTE 检查的独特患者,至少有一次检查是在住院期间进行的。使用接收者操作特征曲线(AUC)值确定 AI-ECG 对 LVSD 的判别能力。

结果

我们纳入了 5680 名平均年龄为 68±15 岁(37%为女性)的患者。55%的患者存在急性冠脉综合征(ACS)。34%的患者存在 LVSD(平均 LVEF 48±16%)。AI-ECG 对 LVSD 的判别 AUC 为 0.83(95%置信区间 0.82-0.84)。使用最佳截断值,AI-ECG 对 LVSD 的敏感度为 73%、特异度为 78%、阴性预测值为 85%、总准确率为 76%。年龄<70 岁的患者(0.85 与 0.80)、男性(0.84 与 0.79)、无 ACS 的患者(0.86 与 0.80)和未行血运重建的患者(0.84 与 0.80)的 AUC 值更高。

结论

在 LVSD 患病率较高的危重 CICU 患者中,AI-ECG 算法对 LVSD 的判别能力非常好。在年轻男性患者和无 ACS 的患者中,性能更好,这突出了在这些 CICU 患者中,使用 AI 心电图筛查 LVSD 可能更为有效。在 TTE 不可用时,AI-ECG 可能对资源有限地区的 LVSD 识别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验