Suppr超能文献

机器学习的关键概念及在心脏重症监护病房的临床应用

Key Concepts in Machine Learning and Clinical Applications in the Cardiac Intensive Care Unit.

作者信息

Sarma Dhruv, Rali Aniket S, Jentzer Jacob C

机构信息

Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Curr Cardiol Rep. 2025 Jan 20;27(1):30. doi: 10.1007/s11886-024-02149-9.

Abstract

PURPOSE OF REVIEW

Artificial Intelligence (AI) technology will significantly alter critical care cardiology, from our understanding of diseases to the way in which we communicate with patients and colleagues. We summarize the potential applications of AI in the cardiac intensive care unit (CICU) by reviewing current evidence, future developments and possible challenges.

RECENT FINDINGS

Machine Learning (ML) methods have been leveraged to improve interpretation and discover novel uses for diagnostic tests such as the ECG and echocardiograms. ML-based dynamic risk stratification and prognostication may help optimize triaging and CICU discharge procedures. Latent class analysis and K-means clustering may reveal underlying disease sub-phenotypes within heterogeneous conditions such as cardiogenic shock and decompensated heart failure. AI technology may help enhance routine clinical care, facilitate medical education and training, and unlock individualized therapies for patients in the CICU. However, robust regulation and improved clinician understanding of AI is essential to overcome important practical and ethical challenges.

摘要

综述目的

人工智能(AI)技术将极大地改变重症监护心脏病学,从我们对疾病的理解到我们与患者及同事沟通的方式。我们通过回顾当前证据、未来发展和可能面临的挑战,总结AI在心脏重症监护病房(CICU)的潜在应用。

最新发现

机器学习(ML)方法已被用于改善诊断测试(如心电图和超声心动图)的解读并发现其新用途。基于ML的动态风险分层和预后评估可能有助于优化分诊和CICU出院程序。潜在类别分析和K均值聚类可能揭示心源性休克和失代偿性心力衰竭等异质性疾病中的潜在疾病亚表型。AI技术可能有助于加强常规临床护理、促进医学教育和培训,并为CICU患者开启个性化治疗。然而,强有力的监管以及临床医生对AI更好的理解对于克服重要的实践和伦理挑战至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验