Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
Structure. 2022 Aug 4;30(8):1190-1207.e5. doi: 10.1016/j.str.2022.05.011. Epub 2022 Jun 16.
To understand mechanistically how the protein fold is shaped by therapeutics to inform precision management of disease, we developed variation-capture (VarC) mapping. VarC triangulates sparse sequence variation information found in the population using Gaussian process regression (GPR)-based machine learning to define the combined pairwise-residue interactions contributing to dynamic protein function in the individual in response to therapeutics. Using VarC mapping, we now reveal the pairwise-residue covariant relationships across the entire protein fold of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) to define the molecular mechanisms of clinically approved CF chemical modulators. We discover an energetically destabilized covariant core containing a di-acidic YKDAD endoplasmic reticulum (ER) exit code that is only weakly corrected by current therapeutics. Our results illustrate that VarC provides a generalizable tool to triangulate information from genetic variation in the population to mechanistically discover therapeutic strategies that guide precision management of the individual.
为了从机制上理解蛋白质折叠如何被治疗药物塑造,从而为疾病的精准管理提供信息,我们开发了变异捕获(VarC)映射。VarC 使用基于高斯过程回归(GPR)的机器学习来三角测量在人群中发现的稀疏序列变异信息,从而定义在个体中对治疗药物产生动态蛋白质功能的组合对残基相互作用。使用 VarC 映射,我们现在揭示了囊性纤维化(CF)跨膜电导调节剂(CFTR)整个蛋白质折叠的对残基共变关系,以定义临床批准的 CF 化学调节剂的分子机制。我们发现一个能量不稳定的共变核心,其中包含一个二酸性 YKDAD 内质网(ER)出口密码,当前的治疗药物只能对其进行弱校正。我们的结果表明,VarC 提供了一种可推广的工具,可从人群中的遗传变异中三角测量信息,从而从机制上发现治疗策略,指导个体的精准管理。