Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA.
Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA.
J Biol Chem. 2022 Jul;298(7):102139. doi: 10.1016/j.jbc.2022.102139. Epub 2022 Jun 14.
Copper (Cu) and iron (Fe) are redox-active metals that serve as cofactors for many essential cellular enzymes. Disruption in the intracellular homeostasis of these metals results in debilitating and frequently fatal human disorders, such as Menkes disease and Friedreich's ataxia. Recently, we reported that an investigational anticancer drug, elesclomol (ES), can deliver Cu to critical mitochondrial cuproenzymes and has the potential to be repurposed for the treatment of Cu deficiency disorders. Here, we sought to determine the specificity of ES and the ES-Cu complex in delivering Cu to cuproenzymes in different intracellular compartments. Using a combination of yeast genetics, subcellular fractionation, and inductively coupled plasma-mass spectrometry-based metal measurements, we showed that ES and ES-Cu treatment results in an increase in cellular and mitochondrial Fe content, along with the expected increase in Cu. Using yeast mutants of Cu and Fe transporters, we demonstrate that ES-based elevation in cellular Fe levels is independent of the major cellular Cu importer but is dependent on the Fe importer Ftr1 and its partner Fet3, a multicopper oxidase. As Fet3 is metalated in the Golgi lumen, we sought to uncover the mechanism by which Fet3 receives Cu from ES. Using yeast knockouts of genes involved in Cu delivery to Fet3, we determined that ES can bypass Atx1, a metallochaperone involved in Cu delivery to the Golgi membrane Cu pump, Ccc2, but not Ccc2 itself. Taken together, our study provides a mechanism by which ES distributes Cu in cells and impacts cellular and mitochondrial Fe homeostasis.
铜(Cu)和铁(Fe)是氧化还原活性金属,它们是许多重要细胞酶的辅助因子。这些金属的细胞内平衡受到破坏,会导致人类出现衰弱甚至常常致命的疾病,如 Menkes 病和 Friedreich 共济失调。最近,我们报告了一种研究性抗癌药物 elesclomol(ES)可以将 Cu 递送到关键的线粒体铜酶,并有可能被重新用于治疗 Cu 缺乏症。在这里,我们试图确定 ES 和 ES-Cu 复合物在将 Cu 递送到不同细胞内隔室的铜酶中的特异性。我们使用酵母遗传学、亚细胞分级分离和基于电感耦合等离子体质谱的金属测量相结合的方法,表明 ES 和 ES-Cu 处理会导致细胞和线粒体 Fe 含量增加,同时 Cu 含量也会增加。使用 Cu 和 Fe 转运蛋白的酵母突变体,我们证明 ES 引起的细胞内 Fe 水平升高与主要的细胞 Cu 内体无关,但依赖于 Fe 内体转运蛋白 Ftr1 及其伴侣 Fet3,一种多铜氧化酶。由于 Fet3 在高尔基体腔中被金属化,我们试图揭示 Fet3 从 ES 中获得 Cu 的机制。我们使用涉及 Fet3 向 Fet3 递 Cu 的基因敲除酵母,确定 ES 可以绕过 Atx1,一种参与将 Cu 递送到高尔基体膜 Cu 泵 Ccc2 的金属伴侣,但不能绕过 Ccc2 本身。总之,我们的研究提供了一种 ES 在细胞中分配 Cu 并影响细胞和线粒体 Fe 稳态的机制。