College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK.
Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
Cancer Med. 2023 Jan;12(1):696-711. doi: 10.1002/cam4.4941. Epub 2022 Jun 18.
Liver cancer is the fourth leading cause of cancer-related death globally which is estimated to reach more than 1 million deaths a year by 2030. Among liver cancer types, hepatocellular carcinoma (HCC) accounts for approximately 90% of the cases and is known to have a tumour promoting inflammation regardless of its underlying aetiology. However, current promising treatment approaches, such as immunotherapy, are partially effective for most of the patients due to the immunosuppressive nature of the tumour microenvironment (TME). Therefore, there is an urgent need to fully understand TME in HCC and discover new immune markers to eliminate resistance to immunotherapy.
We analyse three microarray datasets, using unsupervised and supervised methods, in an effort to discover signature genes. First, univariate, and multivariate, feature selection methods, such as the Boruta algorithm, are applied. Subsequently, an optimisation procedure, which utilises random forest algorithm with three dataset pairs combinations, is performed. The resulting optimal gene sets are then combined and further subjected to network analysis and pathway enrichment analysis so as to obtain information related to their biological relevance. The microarray datasets were analysed via the MCP-counter, CIBERSORT, TIMER, EPIC, and quanTIseq deconvolution methods and an estimation of cell type abundances for each dataset sample were identified. The differences in the cell type abundances, between the adjacent and tumour sample groups, were then assessed using a Wilcoxon Rank Sum test (p-value < 0.05).
The optimal gene signature sets, derived from each of the data pairs combination, achieved AUC values ranging from 0.959 to 0.988 in external validation sets using Random Forest model. CLEC1B and PTTG1 genes are retrieved across each optimal set. Among the signature genes, PTTG1, AURKA, and UBE2C genes are found to be involved in the regulation of mitotic sister chromatid separation and anaphase-promoting complex (APC) dependent catabolic process (adjusted p-value < 0.001). Additionally, the application of deconvolution algorithms revealed significant changes in cell type abundances of Regulatory T (Treg) cells, M0 and M1 macrophages, and T CD8 cells between adjacent and tumour samples.
We identified ECM1 gene as a potential immune-related marker acting through immune cell migration and macrophage polarisation. Our results indicate that macrophages, such as M0 macrophage and M1 macrophage cells, undergo significant changes in HCC TME. Moreover, our immune deconvolution approach revealed significant infiltration of Treg cells and M0 macrophages, and a significant decrease in T CD8 cells and M1 macrophages in tumour samples.
肝癌是全球第四大癌症相关死亡原因,预计到 2030 年,每年将有超过 100 万人因此死亡。在肝癌类型中,肝细胞癌(HCC)约占 90%,并且无论其潜在病因如何,都已知具有促进肿瘤的炎症。然而,由于肿瘤微环境(TME)的免疫抑制性质,目前有希望的治疗方法,如免疫疗法,对大多数患者只有部分效果。因此,迫切需要充分了解 HCC 的 TME 并发现新的免疫标志物以消除对免疫疗法的耐药性。
我们使用非监督和监督方法分析了三个微阵列数据集,以发现特征基因。首先,应用单变量和多变量特征选择方法,如 Boruta 算法。随后,进行了优化过程,该过程利用随机森林算法和三个数据集对组合进行了优化。然后将得到的最优基因集进行组合,并进一步进行网络分析和途径富集分析,以获得与生物学相关性相关的信息。通过 MCP-counter、CIBERSORT、TIMER、EPIC 和 quanTIseq 去卷积方法分析微阵列数据集,并确定每个数据集样本的细胞类型丰度估计值。然后使用 Wilcoxon Rank Sum 检验(p 值<0.05)评估相邻样本组和肿瘤样本组之间细胞类型丰度的差异。
使用随机森林模型,从每个数据对组合中得出的最优基因特征集,在外部验证集中的 AUC 值范围为 0.959 至 0.988。CLEC1B 和 PTTG1 基因在每个最优集中都有被检索到。在特征基因中,PTTG1、AURKA 和 UBE2C 基因被发现参与调节有丝分裂姐妹染色单体分离和后期促进复合物(APC)依赖性分解代谢过程(调整后的 p 值<0.001)。此外,去卷积算法的应用表明,相邻样本和肿瘤样本之间调节性 T(Treg)细胞、M0 和 M1 巨噬细胞以及 T CD8 细胞的细胞类型丰度发生了显著变化。
我们确定 ECM1 基因作为一种潜在的免疫相关标志物,通过免疫细胞迁移和巨噬细胞极化发挥作用。我们的结果表明,在 HCC TME 中,M0 巨噬细胞和 M1 巨噬细胞等巨噬细胞发生了显著变化。此外,我们的免疫去卷积方法显示,Treg 细胞和 M0 巨噬细胞明显浸润,而 T CD8 细胞和 M1 巨噬细胞在肿瘤样本中明显减少。