College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China.
Cell Rep Methods. 2023 Nov 20;3(11):100621. doi: 10.1016/j.crmeth.2023.100621. Epub 2023 Oct 23.
Molecular representation learning plays an important role in molecular property prediction. Existing molecular property prediction models rely on the de facto standard of covalent-bond-based molecular graphs for representing molecular topology at the atomic level and totally ignore the non-covalent interactions within the molecule. In this study, we propose a molecular geometric deep learning model to predict the properties of molecules that aims to comprehensively consider the information of covalent and non-covalent interactions of molecules. The essential idea is to incorporate a more general molecular representation into geometric deep learning (GDL) models. We systematically test molecular GDL (Mol-GDL) on fourteen commonly used benchmark datasets. The results show that Mol-GDL can achieve a better performance than state-of-the-art (SOTA) methods. Extensive tests have demonstrated the important role of non-covalent interactions in molecular property prediction and the effectiveness of Mol-GDL models.
分子表示学习在分子性质预测中起着重要作用。现有的分子性质预测模型依赖于基于共价键的分子图作为原子级别的分子拓扑表示,完全忽略了分子内的非共价相互作用。在这项研究中,我们提出了一种分子几何深度学习模型来预测分子的性质,旨在全面考虑分子的共价和非共价相互作用信息。其基本思想是将更通用的分子表示纳入几何深度学习(GDL)模型中。我们在十四个常用基准数据集上系统地测试了分子 GDL(Mol-GDL)。结果表明,Mol-GDL 可以实现比最先进(SOTA)方法更好的性能。广泛的测试证明了非共价相互作用在分子性质预测中的重要作用和 Mol-GDL 模型的有效性。