Suppr超能文献

分子几何深度学习。

Molecular geometric deep learning.

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China.

出版信息

Cell Rep Methods. 2023 Nov 20;3(11):100621. doi: 10.1016/j.crmeth.2023.100621. Epub 2023 Oct 23.

Abstract

Molecular representation learning plays an important role in molecular property prediction. Existing molecular property prediction models rely on the de facto standard of covalent-bond-based molecular graphs for representing molecular topology at the atomic level and totally ignore the non-covalent interactions within the molecule. In this study, we propose a molecular geometric deep learning model to predict the properties of molecules that aims to comprehensively consider the information of covalent and non-covalent interactions of molecules. The essential idea is to incorporate a more general molecular representation into geometric deep learning (GDL) models. We systematically test molecular GDL (Mol-GDL) on fourteen commonly used benchmark datasets. The results show that Mol-GDL can achieve a better performance than state-of-the-art (SOTA) methods. Extensive tests have demonstrated the important role of non-covalent interactions in molecular property prediction and the effectiveness of Mol-GDL models.

摘要

分子表示学习在分子性质预测中起着重要作用。现有的分子性质预测模型依赖于基于共价键的分子图作为原子级别的分子拓扑表示,完全忽略了分子内的非共价相互作用。在这项研究中,我们提出了一种分子几何深度学习模型来预测分子的性质,旨在全面考虑分子的共价和非共价相互作用信息。其基本思想是将更通用的分子表示纳入几何深度学习(GDL)模型中。我们在十四个常用基准数据集上系统地测试了分子 GDL(Mol-GDL)。结果表明,Mol-GDL 可以实现比最先进(SOTA)方法更好的性能。广泛的测试证明了非共价相互作用在分子性质预测中的重要作用和 Mol-GDL 模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9586/10694498/4dd886b51a30/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验