Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America.
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States of America.
Biochim Biophys Acta Biomembr. 2022 Oct 1;1864(10):183974. doi: 10.1016/j.bbamem.2022.183974. Epub 2022 Jun 15.
KCNE3 is a single transmembrane protein of the KCNE family that modulates the function and trafficking of several voltage-gated potassium channels, including KCNQ1. Structural studies of KCNE3 have been previously conducted in a wide range of model membrane mimics. However, it is important to assess the impact of the membrane mimics used on the observed conformation and dynamics. In this study, we have optimized a method for the reconstitution of the KCNE3 into POPC/POPG lipid bilayer vesicles for electron paramagnetic resonance (EPR) spectroscopy. Our CD spectroscopic data suggested that the degree of regular secondary structure for KCNE3 protein reconstituted into lipid bilayered vesicle is significantly higher than in DPC detergent micelles. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) was used to probe the structural dynamics of S49C, M59C, L67C, V85C, and S101C mutations of KCNE3 in both DPC micelles and in POPC/POPG lipid bilayered vesicles. Our CW-EPR power saturation data suggested that the site S74C is buried inside the lipid bilayered membrane while the site V85C is located outside the membrane, in contrast to DPC micelle results. These results suggest that the KCNE3 micelle structures need to be refined using data obtained in the lipid bilayered vesicles in order to ascertain the native structure of KCNE3. This work will provide guidelines for detailed structural studies of KCNE3 in a more native membrane environment and comparing the lipid bilayer results to the isotropic bicelle structure and to the KCNQ1-bound cryo-EM structure.
KCNE3 是 KCNE 家族的一种单一跨膜蛋白,可调节几种电压门控钾通道的功能和运输,包括 KCNQ1。先前已经在广泛的模型膜模拟物中对 KCNE3 的结构研究进行了研究。然而,评估所使用的膜模拟物对观察到的构象和动力学的影响非常重要。在这项研究中,我们优化了一种将 KCNE3 重新组装到 POPC/POPG 脂质双层囊泡中的方法,用于电子顺磁共振(EPR)光谱。我们的 CD 光谱数据表明,KCNE3 蛋白重新组装到脂质双层囊泡中的规则二级结构程度明显高于 DPC 去污剂胶束。电子顺磁共振(EPR)光谱结合定点自旋标记(SDSL)用于探测 KCNE3 的 S49C、M59C、L67C、V85C 和 S101C 突变在 DPC 胶束和 POPC/POPG 脂质双层囊泡中的结构动力学。我们的 CW-EPR 功率饱和数据表明,与 DPC 胶束结果相反,位点 S74C 被埋藏在脂质双层膜内,而位点 V85C 位于膜外。这些结果表明,需要使用在脂质双层囊泡中获得的数据来改进 KCNE3 胶束结构,以确定 KCNE3 的天然结构。这项工作将为在更天然的膜环境中对 KCNE3 进行详细结构研究提供指导,并将脂质双层结果与各向同性双胶束结构和与 KCNQ1 结合的冷冻电镜结构进行比较。