Suppr超能文献

用于膜蛋白电子顺磁共振(EPR)光谱研究的脂质盘纳米颗粒中人类KCNQ1电压传感结构域(VSD)的表征

Characterization of the Human KCNQ1 Voltage Sensing Domain (VSD) in Lipodisq Nanoparticles for Electron Paramagnetic Resonance (EPR) Spectroscopic Studies of Membrane Proteins.

作者信息

Sahu Indra D, Dixit Gunjan, Reynolds Warren D, Kaplevatsky Ryan, Harding Benjamin D, Jaycox Colleen K, McCarrick Robert M, Lorigan Gary A

机构信息

Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.

Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States.

出版信息

J Phys Chem B. 2020 Mar 26;124(12):2331-2342. doi: 10.1021/acs.jpcb.9b11506. Epub 2020 Mar 16.

Abstract

Membrane proteins are responsible for conducting essential biological functions that are necessary for the survival of living organisms. In spite of their physiological importance, limited structural information is currently available as a result of challenges in applying biophysical techniques for studying these protein systems. Electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study the structural and dynamic properties of membrane proteins. However, the application of EPR spectroscopy to membrane proteins in a native membrane-bound state is extremely challenging due to the complexity observed in inhomogeneity sample preparation and the dynamic motion of the spin label. Detergent micelles are very popular membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is important to test whether the protein structure in a micelle environment is the same as that of its membrane-bound state. Lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have been introduced as a potentially good membrane-mimetic system for structural studies of membrane proteins. Recently, we reported on the EPR characterization of the KCNE1 membrane protein having a single transmembrane incorporated into lipodisq nanoparticles. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the more complicated membrane protein system human KCNQ1 voltage sensing domain (Q1-VSD) having four transmembrane helices using site-directed spin-labeling EPR spectroscopy. Characterization of spin-labeled Q1-VSD incorporated into lipodisq nanoparticles was carried out using CW-EPR spectral line shape analysis and pulsed EPR double-electron electron resonance (DEER) measurements. The CW-EPR spectra indicate an increase in spectral line broadening with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated a superior quality of distance measurement with an increase in the phase memory time () values upon incorporation of the sample into lipodisq nanoparticles when compared to proteoliposomes. These results are consistent with the solution NMR structural studies on the Q1-VSD. This study will be beneficial for researchers working on investigating the structural and dynamic properties of more complicated membrane protein systems using lipodisq nanoparticles.

摘要

膜蛋白负责执行生物体生存所必需的基本生物学功能。尽管它们具有生理重要性,但由于应用生物物理技术研究这些蛋白质系统存在挑战,目前可用的结构信息有限。电子顺磁共振(EPR)光谱是研究膜蛋白结构和动态特性的一种非常强大的技术。然而,由于在非均匀样品制备中观察到的复杂性以及自旋标记的动态运动,将EPR光谱应用于天然膜结合状态的膜蛋白极具挑战性。去污剂胶束因其尺寸较小且均匀,是用于膜蛋白的非常受欢迎的膜模拟物,可通过溶液核磁共振光谱提供高分辨率结构分析。然而,测试胶束环境中的蛋白质结构是否与其膜结合状态相同很重要。脂质盘纳米颗粒或苯乙烯 - 马来酸共聚物 - 脂质纳米颗粒(SMALPs)已被引入作为用于膜蛋白结构研究的潜在良好膜模拟系统。最近,我们报道了将具有单个跨膜结构的KCNE1膜蛋白整合到脂质盘纳米颗粒中的EPR表征。在这项工作中,脂质盘纳米颗粒被用作膜模拟系统,使用定点自旋标记EPR光谱来探测具有四个跨膜螺旋的更复杂的膜蛋白系统人KCNQ1电压传感结构域(Q1 - VSD)的结构和动态特性。使用连续波EPR谱线形状分析和脉冲EPR双电子电子共振(DEER)测量对整合到脂质盘纳米颗粒中的自旋标记Q1 - VSD进行表征。连续波EPR光谱表明,随着苯乙烯 - 马来酸(SMA)聚合物的添加,谱线展宽增加,接近刚性极限,从而实现蛋白质 - 脂质复合物的均匀稳定。同样,EPR DEER测量表明,与蛋白脂质体相比,将样品整合到脂质盘纳米颗粒中后,距离测量质量更高,相位记忆时间()值增加。这些结果与对Q1 - VSD的溶液核磁共振结构研究一致。这项研究将有助于研究人员使用脂质盘纳米颗粒研究更复杂的膜蛋白系统的结构和动态特性。

相似文献

3
Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.
J Phys Chem B. 2017 Jun 1;121(21):5312-5321. doi: 10.1021/acs.jpcb.7b01705. Epub 2017 May 23.
6
DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles.
Biochemistry. 2013 Sep 24;52(38):6627-32. doi: 10.1021/bi4009984. Epub 2013 Sep 9.
8
Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):329-33. doi: 10.1016/j.bbamem.2014.05.008. Epub 2014 May 20.
9
Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy.
Chem Phys Lipids. 2019 May;220:6-13. doi: 10.1016/j.chemphyslip.2019.02.003. Epub 2019 Feb 20.

引用本文的文献

1
Advancements in the conservation of the conformational epitope of membrane protein immunogens.
Front Immunol. 2025 Feb 28;16:1538871. doi: 10.3389/fimmu.2025.1538871. eCollection 2025.
3
Recent advances in membrane mimetics for membrane protein research.
Biochem Soc Trans. 2023 Jun 28;51(3):1405-1416. doi: 10.1042/BST20230164.
4
Perspective on the Effect of Membrane Mimetics on Dynamic Properties of Integral Membrane Proteins.
J Phys Chem B. 2023 May 4;127(17):3757-3765. doi: 10.1021/acs.jpcb.2c07324. Epub 2023 Apr 20.
5
Comparing the structural dynamics of the human KCNE3 in reconstituted micelle and lipid bilayered vesicle environments.
Biochim Biophys Acta Biomembr. 2022 Oct 1;1864(10):183974. doi: 10.1016/j.bbamem.2022.183974. Epub 2022 Jun 15.
7
Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins.
Membranes (Basel). 2021 Sep 3;11(9):685. doi: 10.3390/membranes11090685.
8
Synthesis, Characterization, and Nanodisc Formation of Non-ionic Polymers*.
Angew Chem Int Ed Engl. 2021 Jul 26;60(31):16885-16888. doi: 10.1002/anie.202101950. Epub 2021 Jun 28.
9
In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity.
Biophys J. 2020 Jul 21;119(2):448-459. doi: 10.1016/j.bpj.2020.06.012. Epub 2020 Jun 23.

本文引用的文献

1
Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins.
Nano Res. 2015 Mar;8(3):774-789. doi: 10.1007/s12274-014-0560-6. Epub 2014 Oct 23.
2
Site-Directed Spin Labeling EPR for Studying Membrane Proteins.
Biomed Res Int. 2018 Jan 23;2018:3248289. doi: 10.1155/2018/3248289. eCollection 2018.
3
Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations.
Sci Adv. 2018 Mar 7;4(3):eaar2631. doi: 10.1126/sciadv.aar2631. eCollection 2018 Mar.
5
Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.
J Phys Chem B. 2017 Jun 1;121(21):5312-5321. doi: 10.1021/acs.jpcb.7b01705. Epub 2017 May 23.
10
Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies.
Biochim Biophys Acta. 2016 Nov;1858(11):2931-2939. doi: 10.1016/j.bbamem.2016.08.004. Epub 2016 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验