Sahu Indra D, Dixit Gunjan, Reynolds Warren D, Kaplevatsky Ryan, Harding Benjamin D, Jaycox Colleen K, McCarrick Robert M, Lorigan Gary A
Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.
Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States.
J Phys Chem B. 2020 Mar 26;124(12):2331-2342. doi: 10.1021/acs.jpcb.9b11506. Epub 2020 Mar 16.
Membrane proteins are responsible for conducting essential biological functions that are necessary for the survival of living organisms. In spite of their physiological importance, limited structural information is currently available as a result of challenges in applying biophysical techniques for studying these protein systems. Electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study the structural and dynamic properties of membrane proteins. However, the application of EPR spectroscopy to membrane proteins in a native membrane-bound state is extremely challenging due to the complexity observed in inhomogeneity sample preparation and the dynamic motion of the spin label. Detergent micelles are very popular membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is important to test whether the protein structure in a micelle environment is the same as that of its membrane-bound state. Lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have been introduced as a potentially good membrane-mimetic system for structural studies of membrane proteins. Recently, we reported on the EPR characterization of the KCNE1 membrane protein having a single transmembrane incorporated into lipodisq nanoparticles. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the more complicated membrane protein system human KCNQ1 voltage sensing domain (Q1-VSD) having four transmembrane helices using site-directed spin-labeling EPR spectroscopy. Characterization of spin-labeled Q1-VSD incorporated into lipodisq nanoparticles was carried out using CW-EPR spectral line shape analysis and pulsed EPR double-electron electron resonance (DEER) measurements. The CW-EPR spectra indicate an increase in spectral line broadening with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated a superior quality of distance measurement with an increase in the phase memory time () values upon incorporation of the sample into lipodisq nanoparticles when compared to proteoliposomes. These results are consistent with the solution NMR structural studies on the Q1-VSD. This study will be beneficial for researchers working on investigating the structural and dynamic properties of more complicated membrane protein systems using lipodisq nanoparticles.
膜蛋白负责执行生物体生存所必需的基本生物学功能。尽管它们具有生理重要性,但由于应用生物物理技术研究这些蛋白质系统存在挑战,目前可用的结构信息有限。电子顺磁共振(EPR)光谱是研究膜蛋白结构和动态特性的一种非常强大的技术。然而,由于在非均匀样品制备中观察到的复杂性以及自旋标记的动态运动,将EPR光谱应用于天然膜结合状态的膜蛋白极具挑战性。去污剂胶束因其尺寸较小且均匀,是用于膜蛋白的非常受欢迎的膜模拟物,可通过溶液核磁共振光谱提供高分辨率结构分析。然而,测试胶束环境中的蛋白质结构是否与其膜结合状态相同很重要。脂质盘纳米颗粒或苯乙烯 - 马来酸共聚物 - 脂质纳米颗粒(SMALPs)已被引入作为用于膜蛋白结构研究的潜在良好膜模拟系统。最近,我们报道了将具有单个跨膜结构的KCNE1膜蛋白整合到脂质盘纳米颗粒中的EPR表征。在这项工作中,脂质盘纳米颗粒被用作膜模拟系统,使用定点自旋标记EPR光谱来探测具有四个跨膜螺旋的更复杂的膜蛋白系统人KCNQ1电压传感结构域(Q1 - VSD)的结构和动态特性。使用连续波EPR谱线形状分析和脉冲EPR双电子电子共振(DEER)测量对整合到脂质盘纳米颗粒中的自旋标记Q1 - VSD进行表征。连续波EPR光谱表明,随着苯乙烯 - 马来酸(SMA)聚合物的添加,谱线展宽增加,接近刚性极限,从而实现蛋白质 - 脂质复合物的均匀稳定。同样,EPR DEER测量表明,与蛋白脂质体相比,将样品整合到脂质盘纳米颗粒中后,距离测量质量更高,相位记忆时间()值增加。这些结果与对Q1 - VSD的溶液核磁共振结构研究一致。这项研究将有助于研究人员使用脂质盘纳米颗粒研究更复杂的膜蛋白系统的结构和动态特性。