文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于CT的瘤内和瘤周影像组学列线图用于局部透明细胞肾细胞癌术后复发风险分层

A CT-based intratumoral and peritumoral radiomics nomogram for postoperative recurrence risk stratification in localized clear cell renal cell carcinoma.

作者信息

Li Xiaoxia, Guo Yi, Huang Shunfa, Wang Funan, Dai Chenchen, Zhou Jianjun, Lin Dengqiang

机构信息

Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.

Department of Radiology, Zhongshan Hospital, Fudan University, No 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.

出版信息

BMC Med Imaging. 2025 May 16;25(1):167. doi: 10.1186/s12880-025-01715-z.


DOI:10.1186/s12880-025-01715-z
PMID:40380110
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12084945/
Abstract

OBJECTIVES: This study aimed to develop and validate a computed tomography (CT)-based intratumoral and peritumoral radiomics nomogram to improve the stratification of postoperative recurrence risk in patients with localized clear cell renal cell carcinoma (ccRCC). METHODS: This two-center study included 447 patients with localized ccRCC. Patients from Center A were randomly split into a training set (n = 281) and an internal validation set (IVS) (n = 114) in a 7:3 ratio, while 52 patients from Center B formed the external validation set (EVS). Radiomics features from preoperative CT were obtained from the internal area of tumor (IAT), the internal and peritumoral areas of the tumor at 3 mm (IPAT 3 mm), and 5 mm (IPAT 5 mm). The least absolute shrinkage and selection operator (LASSO) Cox regression was used to construct a radiomics score to develop radiomics model (RM). A clinical model (CM) was also established using significant clinical factors. Furthermore, a fusion model (FM) was developed by integrating independent predictors from both clinical factors and the radiomics score (Radscore) through multivariate Cox proportional hazards regression. Model performance was assessed with Kaplan-Meier curves, time-dependent area under the curve (time-AUC), Harrell's concordance index (C-index), and decision curve analysis (DCA). RESULTS: Compared to both the IAT model and the IPAT 3 mm model, the IPAT 5 mm radiomics model demonstrated superior predictive performance for tumor recurrence (C-index: 0.924 vs. 0.915-0.923 in the IVS; 0.952 vs. 0.920-0.944 in the EVS). Therefore, the IPAT 5 mm radiomics score was incorporated into the development of the fusion model. The FM exhibited outstanding predictive accuracy, achieving a C-index of 0.938 in the IVS, significantly outperforming the CM (0.889, P = 0.03). Notably, in the EVS, the RM surpassed both the CM and FM (C-index: 0.952 vs. 0.904-0.940, P > 0.05). Furthermore, decision curve analysis indicated that the FM provided the highest net clinical benefit in the IVS, while both the FM and RM demonstrated substantially greater net benefit than the CM in the EVS. CONCLUSIONS: The radiomics model and the fusion model, which integrate both intratumoral and peritumoral features, offer accurate prediction of recurrence risk in patients with localized ccRCC. These models have the potential to aid in personalized treatment planning, optimized surveillance strategies, and treatment strategies for patients with clear cell renal cell carcinoma.

摘要

目的:本研究旨在开发并验证一种基于计算机断层扫描(CT)的肿瘤内及肿瘤周围影像组学列线图,以改善局限性透明细胞肾细胞癌(ccRCC)患者术后复发风险的分层。 方法:这项两中心研究纳入了447例局限性ccRCC患者。中心A的患者按7:3的比例随机分为训练集(n = 281)和内部验证集(IVS)(n = 114),而中心B的52例患者组成外部验证集(EVS)。术前CT的影像组学特征取自肿瘤内部区域(IAT)、肿瘤内部及肿瘤周围3 mm处区域(IPAT 3 mm)和5 mm处区域(IPAT 5 mm)。采用最小绝对收缩和选择算子(LASSO)Cox回归构建影像组学评分以开发影像组学模型(RM)。还使用显著临床因素建立了临床模型(CM)。此外,通过多变量Cox比例风险回归整合临床因素和影像组学评分(Radscore)中的独立预测因子,开发了融合模型(FM)。使用Kaplan-Meier曲线、曲线下时间依赖性面积(time-AUC)、Harrell一致性指数(C指数)和决策曲线分析(DCA)评估模型性能。 结果:与IAT模型和IPAT 3 mm模型相比,IPAT 5 mm影像组学模型对肿瘤复发具有更高的预测性能(IVS中C指数:0.924 vs. 0.915 - 0.923;EVS中0.952 vs. 0.920 - 0.944)。因此,将IPAT 5 mm影像组学评分纳入融合模型开发中。FM表现出出色预测准确性,在IVS中C指数达到0.938,显著优于CM(0.889, P = 0.03)。值得注意的是,在EVS中,RM优于CM和FM(C指数:0.952 vs. 0.904 - 0.940, P > 0.05)。此外, 决策曲线分析表明,FM在IVS中提供了最高的净临床效益,而在EVS中FM和RM均显示出比CM更大的净效益。 结论:整合肿瘤内及肿瘤周围特征的影像组学模型和融合模型能够准确预测局限性ccRCC患者的复发风险, 这些模型有可能辅助局限性透明细胞肾细胞癌患者的个性化治疗规划、优化监测策略及治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/3644bf75b5bc/12880_2025_1715_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/81b2533e5c65/12880_2025_1715_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/f1ce1c78635e/12880_2025_1715_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/ea6c0e7cd245/12880_2025_1715_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/ef9b67cd63f9/12880_2025_1715_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/3644bf75b5bc/12880_2025_1715_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/81b2533e5c65/12880_2025_1715_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/f1ce1c78635e/12880_2025_1715_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/ea6c0e7cd245/12880_2025_1715_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/ef9b67cd63f9/12880_2025_1715_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b1/12084945/3644bf75b5bc/12880_2025_1715_Fig5_HTML.jpg

相似文献

[1]
A CT-based intratumoral and peritumoral radiomics nomogram for postoperative recurrence risk stratification in localized clear cell renal cell carcinoma.

BMC Med Imaging. 2025-5-16

[2]
Radiomics nomogram based on CT radiomics features and clinical factors for prediction of Ki-67 expression and prognosis in clear cell renal cell carcinoma: a two-center study.

Cancer Imaging. 2024-8-6

[3]
Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma.

Abdom Radiol (NY). 2025-3

[4]
Development and validation of a CT-based nomogram for preoperative prediction of clear cell renal cell carcinoma grades.

Eur Radiol. 2021-8

[5]
Preoperative prediction of WHO/ISUP grade of ccRCC using intratumoral and peritumoral habitat imaging: multicenter study.

Cancer Imaging. 2025-5-3

[6]
A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study.

Eur Radiol. 2023-12

[7]
Differentiation of Clear Cell and Non-clear-cell Renal Cell Carcinoma through CT-based Radiomics Models and Nomogram.

Curr Med Imaging. 2023

[8]
Preoperative CT radiomicsbased model for predicting Ki67 expression in clear cell renal cell carcinoma patients.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024-11-28

[9]
The potential value of dual-energy CT radiomics in evaluating CD8, CD163 and αSMA cells in the tumor microenvironment of clear cell renal cell carcinoma.

Clin Transl Oncol. 2025-2

[10]
A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma.

Eur Radiol. 2019-9-10

本文引用的文献

[1]
Radiomics predict the WHO/ISUP nuclear grade and survival in clear cell renal cell carcinoma.

Insights Imaging. 2024-7-12

[2]
Predicting the recurrence risk of renal cell carcinoma after nephrectomy: potential role of CT-radiomics for adjuvant treatment decisions.

Eur Radiol. 2023-8

[3]
MRI-Based Radiomics and Urine Creatinine for the Differentiation of Renal Angiomyolipoma With Minimal Fat From Renal Cell Carcinoma: A Preliminary Study.

Front Oncol. 2022-5-26

[4]
Differential Diagnosis of Type 1 and Type 2 Papillary Renal Cell Carcinoma Based on Enhanced CT Radiomics Nomogram.

Front Oncol. 2022-6-3

[5]
The radiomics-based tumor heterogeneity adds incremental value to the existing prognostic models for predicting outcome in localized clear cell renal cell carcinoma: a multicenter study.

Eur J Nucl Med Mol Imaging. 2022-7

[6]
Development and Validation of a CT-Based Radiomics Nomogram for Predicting Postoperative Progression-Free Survival in Stage I-III Renal Cell Carcinoma.

Front Oncol. 2022-1-27

[7]
MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: A multi-center study.

Magn Reson Imaging. 2022-5

[8]
Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy.

Eur J Radiol. 2022-1

[9]
Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study.

Insights Imaging. 2021-11-20

[10]
CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma.

Eur Radiol. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索