Suppr超能文献

低温胁迫耐受性:对豆类作物组学方法的洞察

Low Temperature Stress Tolerance: An Insight Into the Omics Approaches for Legume Crops.

作者信息

Bhat Kaisar Ahmad, Mahajan Reetika, Pakhtoon Mohammad Maqbool, Urwat Uneeb, Bashir Zaffar, Shah Ali Asghar, Agrawal Ankit, Bhat Basharat, Sofi Parvaze A, Masi Antonio, Zargar Sajad Majeed

机构信息

Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India.

Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India.

出版信息

Front Plant Sci. 2022 Jun 3;13:888710. doi: 10.3389/fpls.2022.888710. eCollection 2022.

Abstract

The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.

摘要

气候条件的变化是全球作物产量下降的主要原因。作物生产力的下降将进一步导致全球饥饿率上升。气候变化导致环境胁迫,对植物产生负面影响,如生长缺陷、作物产量下降、长期处于胁迫条件下会造成永久性损害甚至死亡。冷胁迫是已经影响全球作物生产的主要非生物胁迫之一。冷胁迫对植物产生不利影响,导致坏死、黄化和生长迟缓。冷胁迫下的各种生理、生化和分子反应表明,抗寒性比人们所认为的更为复杂,涉及多种途径。与其他作物一样,豆类也受到冷胁迫的影响,因此,一种有效的减轻冷害的技术对于豆类作物的长期生产至关重要。早些时候,由于种间或属间杂交等传统育种方法在作物改良方面取得的成功有限,科学界对任何胁迫下的作物改良都具有挑战性。基因组序列、转录组和蛋白质组数据的可用性为深入了解冷胁迫下的不同复杂机制提供了视角。鉴定负责耐冷胁迫的QTL、基因和蛋白质将有助于改良或培育耐胁迫的豆类作物。冷胁迫可以改变基因表达,进而导致应激保护代谢物增加,以帮助植物应对温度波动。此外,基因工程有助于开发新的耐冷胁迫豆类作物品种。本文提供了对豆类作物冷胁迫“组学”方法的一般见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/528c/9204169/440688bd7a77/fpls-13-888710-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验