Suppr超能文献

基于有界广义高斯混合模型的医学图像配准算法

Medical Image Registration Algorithm Based on Bounded Generalized Gaussian Mixture Model.

作者信息

Wang Jingkun, Xiang Kun, Chen Kuo, Liu Rui, Ni Ruifeng, Zhu Hao, Xiong Yan

机构信息

Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing, China.

College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China.

出版信息

Front Neurosci. 2022 Jun 2;16:911957. doi: 10.3389/fnins.2022.911957. eCollection 2022.

Abstract

In this paper, a method for medical image registration based on the bounded generalized Gaussian mixture model is proposed. The bounded generalized Gaussian mixture model is used to approach the joint intensity of source medical images. The mixture model is formulated based on a maximum likelihood framework, and is solved by an expectation-maximization algorithm. The registration performance of the proposed approach on different medical images is verified through extensive computer simulations. Empirical findings confirm that the proposed approach is significantly better than other conventional ones.

摘要

本文提出了一种基于有界广义高斯混合模型的医学图像配准方法。有界广义高斯混合模型用于逼近源医学图像的联合强度。该混合模型基于最大似然框架构建,并通过期望最大化算法求解。通过大量的计算机模拟验证了所提方法在不同医学图像上的配准性能。实证结果证实,所提方法明显优于其他传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5de9/9201218/b5163a9607de/fnins-16-911957-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验