Jiayi Li, Sixian Li, Weixuan Shi, Manfeng Hu, Jingxiang Zhang
School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China.
Comput Intell Neurosci. 2022 Jun 15;2022:7596421. doi: 10.1155/2022/7596421. eCollection 2022.
In this paper, an SEWIR epidemic model with the government control rate and infectious force in latent period is proposed. The conditions to the existence and uniqueness of disease-free and endemic equilibrium points in the SEWIR model are obtained. By using the Hurwitz criterion, the locally asymptotic stability of disease-free and endemic equilibrium points is proved. We show the global asymptotic stability of the disease-free equilibrium point by the construction of Lyapunov function and LaSalle invariance principle. The globally asymptotic stability of the endemic equilibrium is verified by numerical simulation. Several optimal control strategies are proposed on controlling infectious diseases.
本文提出了一个具有政府控制率和潜伏期感染力的SEWIR传染病模型。得到了SEWIR模型中无病平衡点和地方病平衡点存在唯一性的条件。利用Hurwitz判据证明了无病平衡点和地方病平衡点的局部渐近稳定性。通过构造Lyapunov函数和LaSalle不变性原理证明了无病平衡点的全局渐近稳定性。通过数值模拟验证了地方病平衡点的全局渐近稳定性。提出了几种控制传染病的最优控制策略。