Triantafyllopoulou Efstathia, Pippa Natassa, Demetzos Costas
Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
J Liposome Res. 2023 Mar;33(1):77-88. doi: 10.1080/08982104.2022.2071296. Epub 2022 Jun 22.
At the dawn of a new nanotechnological era in the pharmaceutical field, it is very important to examine and understand all the aspects that influence in vivo behaviour of nanoparticles. In this point of view, the interactions between serum proteins and liposomes with incorporated anionic, cationic, and/or PEGylated lipids were investigated to elucidate the role of surface charge and bilayer fluidity in protein corona's formation. 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC), hydrogenated soybean phosphatidylcholine (HSPC), and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes with the presence or absence of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (chloride salt) (DOTAP), and/or 1,2-dipalmitoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DPPE-PEG 5000) lipids were prepared by the thin-film hydration method. The evaluation of their biophysical characteristics was enabled by differential scanning calorimetry and dynamic and electrophoretic light scattering. The physicochemical characteristics of mixed liposomes were compared before and after exposure to foetal bovine serum (FBS) and were correlated to calorimetric data. Our results indicate protein binding to all liposomal formulations. However, it is highlighted the importance of surface charge and fluidisation effect to the extent of protein adsorption. Additionally, considering the extensive use of cationic lipids for innovative delivery platforms, we deem PEGylation a key parameter, because even in a small proportion can reduce protein binding, and thus fast clearance and extreme toxicity without affecting positive charge. This study is a continuation of our previous work about protein-liposome interactions and fraction of stealthiness (Fs) parameter, and hopefully a design road map for drug and gene delivery.
在制药领域新的纳米技术时代来临之际,审视和理解影响纳米颗粒体内行为的所有方面非常重要。从这个角度出发,研究了血清蛋白与掺入阴离子、阳离子和/或聚乙二醇化脂质的脂质体之间的相互作用,以阐明表面电荷和双层流动性在蛋白冠形成中的作用。通过薄膜水化法制备了含有或不含1,2-二棕榈酰-sn-甘油-3-磷酸-(1'-rac-甘油)(钠盐)(DPPG)、1,2-二-(9Z-十八碳烯酰)-3-三甲基铵丙烷(氯化物盐)(DOTAP)和/或1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-5000](DPPE-PEG 5000)脂质的1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)、氢化大豆磷脂酰胆碱(HSPC)和1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)脂质体。通过差示扫描量热法、动态和电泳光散射对其生物物理特性进行了评估。比较了混合脂质体在暴露于胎牛血清(FBS)前后的物理化学特性,并将其与量热数据相关联。我们的结果表明蛋白与所有脂质体制剂结合。然而,突出了表面电荷和流化效应对于蛋白吸附程度的重要性。此外,考虑到阳离子脂质在创新递送平台中的广泛应用,我们认为聚乙二醇化是一个关键参数,因为即使比例很小也可以减少蛋白结合,从而减少快速清除和极端毒性,同时不影响正电荷。本研究是我们之前关于蛋白-脂质体相互作用和隐形分数(Fs)参数工作的延续,有望成为药物和基因递送的设计路线图。