Ogbolu Bright O, Poudel Tej P, Dikella Thilina N D D, Truong Erica, Chen Yudan, Hou Dewen, Li Tianyi, Liu Yuzi, Gabriel Eric, Xiong Hui, Huang Chen, Hu Yan-Yan
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
Materials Science and Engineering Program, Florida State University, Tallahassee, FL, 32310, USA.
Adv Sci (Weinh). 2025 Feb;12(7):e2409668. doi: 10.1002/advs.202409668. Epub 2024 Dec 17.
Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li mobility. In this study, Li transport in structurally modified LiHoCl, via Br introduction and Li deficiency, is explored. The optimized Li Ho Cl Br achieves an ionic conductivity of 3.8 mS cm at 25 °C, the highest reported for holmium halide materials. Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li motional rate neighboring 116 MHz. X-ray diffraction analyses reveal mixed-anion-induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho-free planes with favorable energetics for Li migration. Bond valence site energy analysis highlights preferred Li transport pathways, particularly in structural planes devoid of Ho blocking effects. Molecular dynamics simulations corroborate enhanced Li diffusion with Br introduction into LiHoCl. Li-Ho electrostatic repulsions in the (001) plane presumably drive Li diffusion into the Ho-free (002) layer, enabling rapid intraplanar Li motion and exchange between the 2d and 4h sites. Li Ho Cl Br also demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high-performance fast ion conductors for all-solid-state batteries.
卤化物基固体电解质(SEs)中的局部原子无序可被利用来提高锂的迁移率。在本研究中,通过引入溴和锂缺陷,探索了结构改性的LiHoCl中的锂传输。优化后的LiHoClBr在25°C时实现了3.8 mS cm的离子电导率,这是卤化钬材料中报道的最高值。锂核磁共振和弛豫测量研究揭示了溴化作用增强了离子动力学,锂的运动速率接近116 MHz。X射线衍射分析表明,混合阴离子诱导了具有不成比例的八面体膨胀和畸变的相变,形成了对锂迁移具有有利能量的无钬平面。键价位点能量分析突出了优先的锂传输途径,特别是在没有钬阻挡效应的结构平面中。分子动力学模拟证实了将溴引入LiHoCl后锂扩散增强。(001)平面中的Li-Ho静电排斥可能会驱动锂扩散到无钬的(002)层中,从而实现快速的平面内锂运动以及2d和4h位点之间的交换。LiHoClBr还表现出良好的电池循环稳定性。这些发现为结构与离子传输之间的复杂关联提供了有价值的见解,并将有助于指导全固态电池高性能快离子导体的设计。