Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States.
ACS Synth Biol. 2022 Jul 15;11(7):2327-2338. doi: 10.1021/acssynbio.2c00024. Epub 2022 Jun 22.
Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
电活性细菌生物膜可以作为活的生物材料,将活细胞的功能与电子元件融合在一起。然而,由于无法控制电活性生物膜相对于固态电极的几何形状,这种先进的活体电子学的发展受到了挑战。在这里,我们开发了一种光刻策略,通过用光诱导的遗传电路来控制聚集蛋白 CdrAB 的表达,从而对 进行图案化。这种受控沉积使 生物膜能够在透明电极表面上进行图案化,电化学测量使我们能够展示出依赖于图案大小的可调导电性,并定量测量活生物膜的固有导电性。固有生物膜电导率测量使我们能够根据最近提出的碰撞交换电子传输机制的模拟实验来验证预测。总的来说,我们开发了一种在电极上控制电活性生物膜形成的简便技术,这对于研究和利用生物电子学都具有重要意义。