Chavez Marko S, MacLean Magdalene A, Sukenik Nir, Yadav Sukrampal, Marks Carolyn, El-Naggar Mohamed Y
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
Core Center of Excellence in Nano Imaging, University of Southern California, Los Angeles, California 90089, United States.
ACS Biomater Sci Eng. 2025 Jan 13;11(1):298-307. doi: 10.1021/acsbiomaterials.4c01183. Epub 2024 Dec 11.
Electroactive microorganisms such as can couple organic electron donor oxidation to the respiration of electrode surfaces, colonizing them in the process. These microbes can also reduce soluble metal ions, such as soluble Pd, resulting in metallic nanoparticle (NP) synthesis. Such NPs are valuable catalysts for industrially relevant chemical production; however, their chemical and solid-state syntheses are often energy-intensive and result in hazardous byproducts. Utilizing electroactive microbes for precious metal NP synthesis has the advantage of operating under more sustainable conditions. By combining 's ability to colonize electrodes and synthesize NPs, we performed electrode cultivation ahead of biogenic Pd NP synthesis for the self-assembled fabrication of a cell-Pd biomaterial. biofilms were grown in electrochemical reactors with added soluble Pd, and electrochemistry, spectroscopy, and electron microscopy were used to confirm (1) metabolic current production before and after Pd addition, (2) simultaneous electrode respiration and soluble Pd reduction over time, and (3) biofilm-localized Pd NP synthesis. Utilizing electroactive microbes for the controlled synthesis of NPs can enable the self-assembly of novel cell-nanoparticle biomaterials with unique electron transport and catalytic properties.
诸如 之类的电活性微生物能够将有机电子供体的氧化与电极表面的呼吸作用相耦合,并在此过程中在电极表面定殖。这些微生物还能还原可溶性金属离子,比如可溶性钯,从而合成金属纳米颗粒(NP)。此类纳米颗粒是工业相关化学品生产中有价值的催化剂;然而,它们的化学合成和固态合成往往能耗巨大,且会产生有害副产物。利用电活性微生物进行贵金属纳米颗粒合成具有在更可持续的条件下运行的优势。通过结合 在电极上定殖和合成纳米颗粒的能力,我们在生物源钯纳米颗粒合成之前进行电极培养,以自组装方式制备细胞 - 钯生物材料。在添加了可溶性钯的电化学反应器中培养生物膜,并利用电化学、光谱学和电子显微镜来确认:(1)添加钯前后的代谢电流产生情况;(2)随着时间推移电极呼吸作用和可溶性钯还原的同步情况;(3)生物膜局部钯纳米颗粒的合成。利用电活性微生物进行纳米颗粒的可控合成能够实现具有独特电子传输和催化特性的新型细胞 - 纳米颗粒生物材料的自组装。