Suppr超能文献

核酸的力学性能与非局部扭曲的柔线链模型。

Mechanical properties of nucleic acids and the non-local twistable wormlike chain model.

机构信息

Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.

Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Kanagawa, Japan.

出版信息

J Chem Phys. 2022 Jun 21;156(23):234105. doi: 10.1063/5.0089166.

Abstract

Mechanical properties of nucleic acids play an important role in many biological processes that often involve physical deformations of these molecules. At sufficiently long length scales (say, above ∼20-30 base pairs), the mechanics of DNA and RNA double helices is described by a homogeneous Twistable Wormlike Chain (TWLC), a semiflexible polymer model characterized by twist and bending stiffnesses. At shorter scales, this model breaks down for two reasons: the elastic properties become sequence-dependent and the mechanical deformations at distal sites get coupled. We discuss in this paper the origin of the latter effect using the framework of a non-local Twistable Wormlike Chain (nlTWLC). We show, by comparing all-atom simulations data for DNA and RNA double helices, that the non-local couplings are of very similar nature in these two molecules: couplings between distal sites are strong for tilt and twist degrees of freedom and weak for roll. We introduce and analyze a simple double-stranded polymer model that clarifies the origin of this universal distal couplings behavior. In this model, referred to as the ladder model, a nlTWLC description emerges from the coarsening of local (atomic) degrees of freedom into angular variables that describe the twist and bending of the molecule. Different from its local counterpart, the nlTWLC is characterized by a length-scale-dependent elasticity. Our analysis predicts that nucleic acids are mechanically softer at the scale of a few base pairs and are asymptotically stiffer at longer length scales, a behavior that matches experimental data.

摘要

核酸的力学性质在许多生物学过程中起着重要作用,这些过程通常涉及这些分子的物理变形。在足够长的长度尺度上(例如,大于约 20-30 个碱基对),DNA 和 RNA 双螺旋的力学性质由均匀的可扭曲的线状链(TWLC)描述,这是一种具有扭曲和弯曲刚度的半柔性聚合物模型。在较短的尺度上,由于以下两个原因,该模型不再适用:弹性性质变得依赖于序列,并且远端的力学变形相互耦合。我们使用非局部可扭曲线状链(nlTWLC)的框架讨论了后一种效应的起源。通过比较 DNA 和 RNA 双螺旋的全原子模拟数据,我们表明,在这两种分子中,非局部耦合具有非常相似的性质:对于倾斜和扭曲自由度,远端位点之间的耦合较强,而对于滚动自由度,耦合较弱。我们引入并分析了一个简单的双链聚合物模型,该模型阐明了这种普遍的远端耦合行为的起源。在这个模型中,称为 Ladder 模型,nlTWLC 描述是通过将局部(原子)自由度粗化为描述分子扭曲和弯曲的角变量而得出的。与局部对应物不同,nlTWLC 的特点是弹性随长度尺度变化。我们的分析预测,核酸在几个碱基对的尺度上机械上较软,并且在较长的长度尺度上逐渐变硬,这种行为与实验数据相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验