Suppr超能文献

基于粗粒化模拟的 DNA 弹性:沟道非对称的影响。

DNA elasticity from coarse-grained simulations: The effect of groove asymmetry.

机构信息

Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.

出版信息

J Chem Phys. 2017 Jun 7;146(21):214902. doi: 10.1063/1.4984039.

Abstract

It is well established that many physical properties of DNA at sufficiently long length scales can be understood by means of simple polymer models. One of the most widely used elasticity models for DNA is the twistable worm-like chain (TWLC), which describes the double helix as a continuous elastic rod with bending and torsional stiffness. An extension of the TWLC, which has recently received some attention, is the model by Marko and Siggia, who introduced an additional twist-bend coupling, expected to arise from the groove asymmetry. By performing computer simulations of two available versions of oxDNA, a coarse-grained model of nucleic acids, we investigate the microscopic origin of twist-bend coupling. We show that this interaction is negligible in the oxDNA version with symmetric grooves, while it appears in the oxDNA version with asymmetric grooves. Our analysis is based on the calculation of the covariance matrix of equilibrium deformations, from which the stiffness parameters are obtained. The estimated twist-bend coupling coefficient from oxDNA simulations is G=30±1 nm. The groove asymmetry induces a novel twist length scale and an associated renormalized twist stiffness κ≈80 nm, which is different from the intrinsic torsional stiffness C≈110 nm. This naturally explains the large variations on experimental estimates of the intrinsic stiffness performed in the past.

摘要

已有充分的证据表明,在足够长的长度尺度上,许多 DNA 的物理性质可以通过简单的聚合物模型来理解。用于描述 DNA 的最广泛使用的弹性模型之一是可扭曲的类蠕虫链(TWLC),它将双螺旋描述为具有弯曲和扭转刚度的连续弹性棒。TWLC 的一个扩展最近受到了一些关注,即 Marko 和 Siggia 的模型,该模型引入了额外的扭曲-弯曲耦合,预计这种耦合源于沟槽不对称性。通过对两种可用的 oxDNA 版本(一种核酸的粗粒模型)进行计算机模拟,我们研究了扭曲-弯曲耦合的微观起源。我们表明,在具有对称沟槽的 oxDNA 版本中,这种相互作用可以忽略不计,而在具有不对称沟槽的 oxDNA 版本中,它会出现。我们的分析基于平衡变形协方差矩阵的计算,从中获得了刚度参数。从 oxDNA 模拟中估计的扭曲-弯曲耦合系数为 G=30±1nm。沟槽不对称性诱导出一种新的扭曲长度尺度和相关的重整化扭曲刚度 κ≈80nm,这与内在扭转刚度 C≈110nm 不同。这自然解释了过去进行的关于内在刚度的大量实验估计值的巨大变化。

相似文献

1
DNA elasticity from coarse-grained simulations: The effect of groove asymmetry.
J Chem Phys. 2017 Jun 7;146(21):214902. doi: 10.1063/1.4984039.
3
Twist-Bend Coupling and the Torsional Response of Double-Stranded DNA.
Phys Rev Lett. 2017 May 26;118(21):217801. doi: 10.1103/PhysRevLett.118.217801.
4
Computing the Elastic Mechanical Properties of Rodlike DNA Nanostructures.
J Chem Theory Comput. 2020 Dec 8;16(12):7748-7763. doi: 10.1021/acs.jctc.0c00661. Epub 2020 Nov 9.
6
Overtwisting induces polygonal shapes in bent DNA.
J Chem Phys. 2019 Apr 7;150(13):135101. doi: 10.1063/1.5084950.
7
From rigid base pairs to semiflexible polymers: coarse-graining DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021923. doi: 10.1103/PhysRevE.76.021923. Epub 2007 Aug 22.
8
Length-scale-dependent elasticity in DNA from coarse-grained and all-atom models.
Phys Rev E. 2021 Apr;103(4-1):042408. doi: 10.1103/PhysRevE.103.042408.
9
Mechanical properties of nucleic acids and the non-local twistable wormlike chain model.
J Chem Phys. 2022 Jun 21;156(23):234105. doi: 10.1063/5.0089166.
10
Twist-bend coupling, twist waves, and the shape of DNA loops.
Phys Rev E. 2019 Aug;100(2-1):022402. doi: 10.1103/PhysRevE.100.022402.

引用本文的文献

1
Effect of temperature on anisotropic bending elasticity of dsRNA: an all-atom molecular dynamics simulation.
RSC Adv. 2024 May 28;14(24):17170-17177. doi: 10.1039/d4ra02354d. eCollection 2024 May 22.
2
Bending DNA increases its helical repeat.
bioRxiv. 2024 Nov 27:2024.02.14.579968. doi: 10.1101/2024.02.14.579968.
3
Design Approaches and Computational Tools for DNA Nanostructures.
IEEE Open J Nanotechnol. 2021;2:86-100. doi: 10.1109/ojnano.2021.3119913. Epub 2021 Oct 14.
4
Diameter Dependent Melting and Softening of dsDNA Under Cylindrical Confinement.
Front Chem. 2022 May 2;10:879746. doi: 10.3389/fchem.2022.879746. eCollection 2022.
5
The interplay of supercoiling and thymine dimers in DNA.
Nucleic Acids Res. 2022 Mar 21;50(5):2480-2492. doi: 10.1093/nar/gkac082.
6
A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results.
Front Mol Biosci. 2021 Jun 17;8:693710. doi: 10.3389/fmolb.2021.693710. eCollection 2021.
7
Energetics of twisted DNA topologies.
Biophys J. 2021 Aug 17;120(16):3242-3252. doi: 10.1016/j.bpj.2021.05.002. Epub 2021 May 8.
8
Effects of Model Shape, Volume, and Softness of the Capsid for DNA Packaging of phi29.
J Phys Chem B. 2020 Nov 19;124(46):10337-10344. doi: 10.1021/acs.jpcb.0c07478. Epub 2020 Nov 5.
9
Coarse-grained modelling of DNA plectoneme pinning in the presence of base-pair mismatches.
Nucleic Acids Res. 2020 Nov 4;48(19):10713-10725. doi: 10.1093/nar/gkaa836.

本文引用的文献

1
Twist-Bend Coupling and the Torsional Response of Double-Stranded DNA.
Phys Rev Lett. 2017 May 26;118(21):217801. doi: 10.1103/PhysRevLett.118.217801.
2
Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation.
Nucleic Acids Res. 2016 Nov 2;44(19):9121-9130. doi: 10.1093/nar/gkw815. Epub 2016 Sep 22.
3
Extreme bendability of DNA double helix due to bending asymmetry.
J Chem Phys. 2015 Sep 14;143(10):104904. doi: 10.1063/1.4929994.
4
Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations.
Biophys J. 2015 Jul 7;109(1):135-43. doi: 10.1016/j.bpj.2015.06.005.
6
7
Biophysics of protein-DNA interactions and chromosome organization.
Physica A. 2015 Jan 15;418:126-153. doi: 10.1016/j.physa.2014.07.045.
8
Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15408-13. doi: 10.1073/pnas.1407197111. Epub 2014 Oct 13.
9
Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning.
Nucleic Acids Res. 2014 Jun;42(11):7383-94. doi: 10.1093/nar/gku338. Epub 2014 May 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验