Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
Phys Rev E. 2021 Apr;103(4-1):042408. doi: 10.1103/PhysRevE.103.042408.
We investigate the influence of nonlocal couplings on the torsional and bending elasticities of DNA. Such couplings have been observed in the past by several simulation studies. Here, we use a description of DNA conformations based on the variables tilt, roll, and twist. Our analysis of both coarse-grained (oxDNA) and all-atom models indicates that these share strikingly similar features: there are strong off-site couplings for tilt-tilt and twist-twist, while they are much weaker in the roll-roll case. By developing an analytical framework to estimate bending and torsional persistence lengths in nonlocal DNA models, we show how off-site interactions generate a length-scale-dependent elasticity. Based on the simulation-generated elasticity data, the theory predicts a significant length-scale-dependent effect on torsional fluctuations but only a modest effect on bending fluctuations. These results are in agreement with experiments probing DNA mechanics from single base pair to kilobase pair scales.
我们研究了非局域耦合对 DNA 的扭转和弯曲弹性的影响。过去的几项模拟研究已经观察到了这种耦合。在这里,我们使用基于倾斜、滚转和扭转变量的 DNA 构象描述。我们对粗粒度(oxDNA)和全原子模型的分析表明,它们具有惊人的相似特征:倾斜-倾斜和扭转-扭转的非局域耦合很强,而滚转-滚转的耦合则弱得多。通过开发一个分析框架来估计非局域 DNA 模型中的弯曲和扭转持久长度,我们展示了非局域相互作用如何产生长度依赖性弹性。基于模拟生成的弹性数据,该理论预测扭转波动会产生显著的长度依赖性效应,但对弯曲波动的影响较小。这些结果与从单个碱基对到千碱基对尺度探测 DNA 力学的实验结果一致。