Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
Small. 2022 Jul;18(29):e2107976. doi: 10.1002/smll.202107976. Epub 2022 Jun 22.
The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000-6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er to Yb , [Er ]/[Yb ], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs' dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl ·6H O precursors (β-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er ]/[Yb ] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs.
镧系元素激活剂和敏化剂掺杂离子的空间分布和浓度对于上转换纳米粒子(UCNP)的发光颜色和效率至关重要。定量掺杂离子的分布和混合,并将其与合成方法相关联,需要合适的分析技术。在这里,使用软 X 射线(2000-6000 eV)进行 X 射线光电子能谱深度剖析,提供与 UCNP 尺寸理想匹配的探测深度,用于测量三种不同试剂和合成方法制备的 UCNP 中 Er 与 Yb 的深度依赖性浓度比 [Er]/[Yb]。这与镧系离子浓度的电感耦合等离子体-光学发射光谱(ICP-OES)测量相结合,构建了 UCNP 掺杂离子分布的模型。选择 UCNP 的尺寸和结构来证明这种方法的潜力。使用 XCl·6H2O 前体(β 相)合成的仅核 UCNP 表现出镧系元素离子的均匀分布,但使用三氟乙酸盐前体(α 相)制备的 UCNP 观察到略微增强的表面 [Er]/[Yb]。对 Yb 核@Er 壳 UCNP 的检查揭示了在单掺杂核和壳之间存在共掺杂、混合区域。讨论了这些不同掺杂离子分布对 UCNP 光学性质的影响,以突出它们对 UCNP 功能和高效 UCNP 设计的重要性。