Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA.
Nature. 2022 Jul;607(7917):185-190. doi: 10.1038/s41586-022-04858-z. Epub 2022 Jun 22.
Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.
翻译起始决定了合成蛋白质的身份和数量。该过程在许多人类疾病中失调。关键的承诺步骤是核糖体亚基在信使 RNA 上的翻译起始位点结合,形成功能性核糖体。在这里,我们使用体外重建系统结合单分子光谱和结构方法来研究人类核糖体亚基的结合方式。单分子荧光揭示了普遍保守的真核起始因子 eIF1A 和 eIF5B 与起始复合物结合和分离的时间。受单分子动力学的指导,我们使用单颗粒冷冻电子显微镜可视化了同时含有 eIF1A 和 eIF5B 的起始复合物。所得结构揭示了两种蛋白质之间的真核生物特异性接触如何重塑起始复合物,从而将起始氨酰-tRNA 定向到与核糖体亚基结合相容的构象。总的来说,我们的研究结果为 eIF1A 和 eIF5B 在人类翻译起始过程中协调的分子舞蹈提供了定量和结构框架。