Suppr超能文献

人源 48 翻译起始复合物的结构。

Structure of a human 48 translational initiation complex.

机构信息

MRC Laboratory of Molecular Biology, Cambridge, UK.

Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.

出版信息

Science. 2020 Sep 4;369(6508):1220-1227. doi: 10.1126/science.aba4904.

Abstract

A key step in translational initiation is the recruitment of the 43 preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48 initiation complex (i.e., the 48). The 48 then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48 The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43 The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40 subunit during scanning.

摘要

翻译起始的一个关键步骤是帽结合复合物(真核起始因子 4F[eIF4F])在信使 RNA(mRNA)的 5'端募集 43 前起始复合物,形成 48 起始复合物(即 48)。然后,48 沿着 mRNA 扫描以定位起始密码子。为了了解所涉及的机制,我们使用冷冻电子显微镜确定了重组的人 48 结构。该结构揭示了翻译起始复合物组装的早期事件的见解,以及 eIF4F 如何与 43 中 mRNA 出口通道附近的 eIF3 亚基相互作用。eIF4F 的位置与 mRNA 募集的开槽模型一致,并表明在扫描过程中,下游 mRNA 至少部分通过“拉动”40 亚基而解旋。

相似文献

1
Structure of a human 48 translational initiation complex.
Science. 2020 Sep 4;369(6508):1220-1227. doi: 10.1126/science.aba4904.
2
Structure of a human cap-dependent 48S translation pre-initiation complex.
Nucleic Acids Res. 2018 Mar 16;46(5):2678-2689. doi: 10.1093/nar/gky054.
3
The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A.
Nat Struct Mol Biol. 2024 Mar;31(3):455-464. doi: 10.1038/s41594-023-01196-0. Epub 2024 Jan 29.
4
Structure of mammalian eIF3 in the context of the 43S preinitiation complex.
Nature. 2015 Sep 24;525(7570):491-5. doi: 10.1038/nature14891. Epub 2015 Sep 7.
6
Structural basis for translational control by the human 48S initiation complex.
Nat Struct Mol Biol. 2025 Jan;32(1):62-72. doi: 10.1038/s41594-024-01378-4. Epub 2024 Sep 17.
7
Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation.
EMBO J. 2005 Nov 2;24(21):3737-46. doi: 10.1038/sj.emboj.7600844. Epub 2005 Oct 13.
8
Large-scale movement of eIF3 domains during translation initiation modulate start codon selection.
Nucleic Acids Res. 2021 Nov 18;49(20):11491-11511. doi: 10.1093/nar/gkab908.
9
A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6304-6309. doi: 10.1073/pnas.1620426114. Epub 2017 May 30.

引用本文的文献

1
Thermoregulation network governing virulence of a critical human fungal pathogen.
bioRxiv. 2025 Aug 18:2025.08.18.670910. doi: 10.1101/2025.08.18.670910.
2
The translation initiation factor DHX29 appears to pull on mRNA in a direction opposite to scanning.
bioRxiv. 2025 Jul 14:2025.07.13.664561. doi: 10.1101/2025.07.13.664561.
4
eIF1 and eIF5 dynamically control translation start site fidelity.
Nat Struct Mol Biol. 2025 Jul 28. doi: 10.1038/s41594-025-01629-y.
6
Dynamics and Regulation of mRNA Cap Recognition by Human eIF4F.
bioRxiv. 2025 Jun 27:2025.06.26.660926. doi: 10.1101/2025.06.26.660926.
7
Targeted Inhibition of Translation Initiation via 2'O-Methylation of Start Codons.
bioRxiv. 2025 Jun 17:2025.06.14.659565. doi: 10.1101/2025.06.14.659565.
9
FMRP drives mRNP targets into translationally silenced complexes.
Mol Cell. 2025 Jul 8. doi: 10.1016/j.molcel.2025.06.012.
10
Assembly and disassembly of stress granules in kidney diseases.
iScience. 2025 May 24;28(6):112578. doi: 10.1016/j.isci.2025.112578. eCollection 2025 Jun 20.

本文引用的文献

1
Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells.
Mol Cell. 2020 Aug 20;79(4):561-574.e5. doi: 10.1016/j.molcel.2020.06.005. Epub 2020 Jun 25.
2
Structural Insights into the Mammalian Late-Stage Initiation Complexes.
Cell Rep. 2020 Apr 7;31(1):107497. doi: 10.1016/j.celrep.2020.03.061.
3
Modulation of RNA Condensation by the DEAD-Box Protein eIF4A.
Cell. 2020 Feb 6;180(3):411-426.e16. doi: 10.1016/j.cell.2019.12.031. Epub 2020 Jan 9.
4
Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data.
Protein Sci. 2020 Apr;29(4):1069-1078. doi: 10.1002/pro.3791. Epub 2020 Mar 2.
5
ABCE1 Controls Ribosome Recycling by an Asymmetric Dynamic Conformational Equilibrium.
Cell Rep. 2019 Jul 16;28(3):723-734.e6. doi: 10.1016/j.celrep.2019.06.052.
6
Hcr1/eIF3j Is a 60S Ribosomal Subunit Recycling Accessory Factor In Vivo.
Cell Rep. 2019 Jul 2;28(1):39-50.e4. doi: 10.1016/j.celrep.2019.05.111.
9
Real-space refinement in PHENIX for cryo-EM and crystallography.
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544. doi: 10.1107/S2059798318006551. Epub 2018 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验