Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.
Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2017715118.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
严重急性呼吸系统综合症冠状病毒 2 型(SARS-CoV-2)是一种β冠状病毒,最近才成为人类病原体,也是 COVID-19 大流行的致病因子。病毒如何操纵宿主细胞机制来促进感染的分子框架仍然不清楚。在这里,我们重点研究 SARS-CoV-2 的 NSP1,它被认为是一种毒力因子,通过直接结合人类核糖体来抑制蛋白质合成。我们从生化角度证明了 NSP1 抑制了模型人类和 SARS-CoV-2 信使 RNA(mRNA)的翻译。NSP1 特异性结合小(40S)核糖体亚基,这是翻译抑制所必需的。我们使用单分子荧光测定法实时监测 NSP1-40S 亚基结合,确定真核翻译起始因子(eIFs)在没有 mRNA 的情况下,变构调节 NSP1 与核糖体起始复合物的相互作用。我们进一步阐明,NSP1 与起始密码子下游的 RNA 片段竞争与 40S 亚基结合,并且该蛋白无法迅速与在 mRNA 上组装的 80S 核糖体结合。总的来说,我们的研究结果支持这样一种模型,即至少两个β-CoV 亚属的病毒 NSP1 蛋白与 40S 亚基的开放头部构象结合,通过阻止 mRNA 进入入口通道来抑制翻译的早期步骤。