Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK.
POLARIS, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK.
Sci Rep. 2022 Jun 22;12(1):10566. doi: 10.1038/s41598-022-14672-2.
Respiratory diseases are leading causes of mortality and morbidity worldwide. Pulmonary imaging is an essential component of the diagnosis, treatment planning, monitoring, and treatment assessment of respiratory diseases. Insights into numerous pulmonary pathologies can be gleaned from functional lung MRI techniques. These include hyperpolarized gas ventilation MRI, which enables visualization and quantification of regional lung ventilation with high spatial resolution. Segmentation of the ventilated lung is required to calculate clinically relevant biomarkers. Recent research in deep learning (DL) has shown promising results for numerous segmentation problems. Here, we evaluate several 3D convolutional neural networks to segment ventilated lung regions on hyperpolarized gas MRI scans. The dataset consists of 759 helium-3 (He) or xenon-129 (Xe) volumetric scans and corresponding expert segmentations from 341 healthy subjects and patients with a wide range of pathologies. We evaluated segmentation performance for several DL experimental methods via overlap, distance and error metrics and compared them to conventional segmentation methods, namely, spatial fuzzy c-means (SFCM) and K-means clustering. We observed that training on combined He and Xe MRI scans using a 3D nn-UNet outperformed other DL methods, achieving a mean ± SD Dice coefficient of 0.963 ± 0.018, average boundary Hausdorff distance of 1.505 ± 0.969 mm, Hausdorff 95th percentile of 5.754 ± 6.621 mm and relative error of 0.075 ± 0.039. Moreover, limited differences in performance were observed between Xe and He scans in the testing set. Combined training on Xe and He yielded statistically significant improvements over the conventional methods (p < 0.0001). In addition, we observed very strong correlation and agreement between DL and expert segmentations, with Pearson correlation of 0.99 (p < 0.0001) and Bland-Altman bias of - 0.8%. The DL approach evaluated provides accurate, robust and rapid segmentations of ventilated lung regions and successfully excludes non-lung regions such as the airways and artefacts. This approach is expected to eliminate the need for, or significantly reduce, subsequent time-consuming manual editing.
呼吸系统疾病是全球范围内导致死亡和发病的主要原因。肺部影像学是呼吸系统疾病诊断、治疗计划、监测和治疗评估的重要组成部分。功能肺部 MRI 技术可以深入了解多种肺部病理。其中包括超极化气体通气 MRI,它可以以高空间分辨率可视化和量化区域肺部通气。需要对通气肺部进行分割,以计算临床相关的生物标志物。深度学习(DL)的最新研究在许多分割问题上取得了有希望的结果。在这里,我们评估了几种 3D 卷积神经网络,以分割超极化气体 MRI 扫描中的通气肺部区域。该数据集由 759 例氦-3(He)或氙-129(Xe)容积扫描和来自 341 名健康受试者和患有多种疾病的患者的相应专家分割组成。我们通过重叠、距离和误差度量评估了几种 DL 实验方法的分割性能,并将其与传统分割方法(即空间模糊 C 均值(SFCM)和 K-均值聚类)进行了比较。我们观察到,使用 3D nn-UNet 对 He 和 Xe MRI 扫描进行联合训练优于其他 DL 方法,平均 Dice 系数为 0.963±0.018,平均边界 Hausdorff 距离为 1.505±0.969mm,Hausdorff 第 95 百分位数为 5.754±6.621mm,相对误差为 0.075±0.039。此外,在测试集中,Xe 和 He 扫描之间的性能差异很小。Xe 和 He 的联合训练在统计学上显著优于传统方法(p<0.0001)。此外,我们观察到 DL 和专家分割之间具有非常强的相关性和一致性,Pearson 相关系数为 0.99(p<0.0001),Bland-Altman 偏差为-0.8%。评估的 DL 方法提供了通气肺部区域的准确、稳健和快速分割,并成功排除了气道和伪影等非肺部区域。预计该方法将消除或大大减少后续耗时的手动编辑。