Suppr超能文献

人工智能对肺癌诊断及个性化治疗的影响

The Impact of Artificial Intelligence on Lung Cancer Diagnosis and Personalized Treatment.

作者信息

Ayasa Yaman, Alajrami Diyar, Idkedek Mayar, Tahayneh Kareem, Akar Firas Abu

机构信息

Faculty of Medicine, Al-Quds University, East Jerusalem 20002, Palestine.

Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem 20002, Palestine.

出版信息

Int J Mol Sci. 2025 Aug 31;26(17):8472. doi: 10.3390/ijms26178472.

Abstract

Lung cancer is the leading cause of cancer mortality globally, despite the advancements in screening and management. Survival rates for lung cancer remain suboptimal, largely due to late-stage diagnoses and tumor heterogeneity. Recent advancements in artificial intelligence and radiomics provide a promising outlook for lung cancer screening, diagnosis, personalized treatment, and prognosis. These advances use large-scale clinical and imaging datasets that help identify patterns and predictive features that may be missed by human interpretation. Artificial intelligence tools hold the potential to take clinical decision-making to another level, thus improving patient outcomes. This review summarizes current evidence on the applications, challenges, and future directions of artificial intelligence (AI) in lung cancer care, with an emphasis on early diagnosis and personalized treatment. We examine recent developments in AI-driven approaches, including machine learning and deep neural networks, applied to imaging (radiomics), histopathology, biomarker analysis, and multi-omic data integration. AI-based models demonstrate promising performance in early detection, risk stratification, molecular profiling (e.g., programmed death-ligand 1 (PD-L1) and epidermal growth factor receptor (EGFR) status), and outcome prediction. These tools may enhance diagnostic accuracy, optimize therapeutic decisions, and ultimately improve patient outcomes. However, significant challenges remain, including model heterogeneity, limited external validation, generalizability issues, and ethical concerns related to transparency and clinical accountability. AI holds transformative potential for lung cancer care but requires further validation, standardization, and integration into clinical workflows. Multicenter collaborations, regulatory frameworks, and explainable AI models will be essential for successful clinical adoption.

摘要

尽管在筛查和治疗方面取得了进展,但肺癌仍是全球癌症死亡的主要原因。肺癌的生存率仍然不尽人意,这主要是由于晚期诊断和肿瘤异质性。人工智能和放射组学的最新进展为肺癌筛查、诊断、个性化治疗和预后提供了广阔的前景。这些进展利用大规模临床和影像数据集,有助于识别可能被人工解读遗漏的模式和预测特征。人工智能工具有可能将临床决策提升到一个新水平,从而改善患者的治疗效果。本综述总结了人工智能(AI)在肺癌治疗中的应用、挑战和未来方向的现有证据,重点是早期诊断和个性化治疗。我们研究了人工智能驱动方法的最新进展,包括应用于成像(放射组学)、组织病理学、生物标志物分析和多组学数据整合的机器学习和深度神经网络。基于人工智能的模型在早期检测、风险分层、分子特征分析(如程序性死亡配体1(PD-L1)和表皮生长因子受体(EGFR)状态)和预后预测方面表现出良好的前景。这些工具可能提高诊断准确性,优化治疗决策,并最终改善患者的治疗效果。然而,重大挑战仍然存在,包括模型异质性、有限的外部验证、可推广性问题以及与透明度和临床问责制相关的伦理问题。人工智能在肺癌治疗方面具有变革潜力,但需要进一步验证、标准化并整合到临床工作流程中。多中心合作、监管框架和可解释的人工智能模型对于成功的临床应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da71/12429163/147c6b2438bb/ijms-26-08472-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验