Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, D-53115 Bonn, Germany.
Crop Science Division, Research and Development, Bayer AG, D-40789 Monheim, Germany.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2205850119. doi: 10.1073/pnas.2205850119. Epub 2022 Jun 21.
The regulatory process for assessing the risks of pesticides to bees relies heavily on the use of the honeybee, , as a model for other bee species. However, the validity of using as a surrogate for other and non- bees in pesticide risk assessment has been questioned. Related to this line of research, recent work on has shown that specific P450 enzymes belonging to the CYP9Q subfamily act as critically important determinants of insecticide sensitivity in this species by efficiently detoxifying certain insecticide chemotypes. However, the extent to which the presence of functional orthologs of these enzymes is conserved across the diversity of bees is unclear. Here we used a phylogenomic approach to identify > 100 putative CYP9Q functional orthologs across 75 bee species encompassing all major bee families. Functional analysis of 26 P450s from 20 representative bee species revealed that P450-mediated detoxification of certain systemic insecticides, including the neonicotinoid thiacloprid and the butenolide flupyradifurone, is conserved across all major bee pollinator families. However, our analyses also reveal that -related genes are not universal to all bee species, with some Megachilidae species lacking such genes. Thus, our results reveal an evolutionary conserved capacity to metabolize certain insecticides across all major bee families while identifying a small number of bee species where this function may have been lost. Furthermore, they illustrate the potential of a toxicogenomic approach to inform pesticide risk assessment for nonmanaged bee species by predicting the capability of bee pollinator species to break down synthetic insecticides.
评估农药对蜜蜂风险的监管程序严重依赖于利用蜜蜂作为其他蜜蜂物种的模型。然而,使用作为其他非蜜蜂物种在农药风险评估中的替代物的有效性一直受到质疑。与这一研究方向相关,最近关于的研究表明,属于 CYP9Q 亚家族的特定 P450 酶通过有效地解毒某些杀虫剂化学型,是这种物种对杀虫剂敏感性的重要决定因素。然而,这些酶的功能性同源物在蜜蜂多样性中的存在程度是否得到保守尚不清楚。在这里,我们使用系统基因组学方法在 75 种蜜蜂物种中鉴定了 >100 种推定的 CYP9Q 功能性同源物,这些物种涵盖了所有主要的蜜蜂科。对来自 20 种代表性蜜蜂物种的 26 种 P450 的功能分析表明,某些系统杀虫剂的 P450 介导解毒作用在所有主要的蜜蜂授粉媒介科中是保守的,包括新烟碱噻虫啉和丁烯酸氟吡呋喃酮。然而,我们的分析也表明,与相关的基因并不是所有蜜蜂物种所共有的,一些 Megachilidae 物种缺乏这些基因。因此,我们的研究结果揭示了所有主要蜜蜂科中代谢某些杀虫剂的进化保守能力,同时也确定了少数几种蜜蜂物种可能已经失去了这种功能。此外,它们说明了毒理基因组学方法在预测蜜蜂授粉物种分解合成杀虫剂的能力方面,为非管理蜜蜂物种的农药风险评估提供信息的潜力。