Suppr超能文献

蜂巢城的菌丝蜂巢:为蜜蜂设计和构建治疗性内部巢穴环境

Mycelial Beehives of HIVEOPOLIS: Designing and Building Therapeutic Inner Nest Environments for Honeybees.

作者信息

Ilgun Asya, Schmickl Thomas

机构信息

Artificial Life Laboratory, Institute of Biology, University of Graz, 8010 Graz, Austria.

出版信息

Biomimetics (Basel). 2022 Jun 7;7(2):75. doi: 10.3390/biomimetics7020075.

Abstract

The perceptions and definitions of healthy indoor environments have changed significantly throughout architectural history. Today, molecular biology teaches us that microbes play important roles in human health, and that isolation from them puts not only us but also other inhabitants of urban landscapes, at risk. In order to provide an environment that makes honeybees more resilient to environmental changes, we aim for combining the thermal insulation functionality of mycelium materials with bioactive therapeutic properties within beehive constructions. By identifying mycelial fungi's interactions with nest-related materials, using digital methods to design a hive structure, and engaging in additive manufacturing, we were able to develop a set of methods for designing and fabricating a fully grown hive. We propose two digital methods for modelling 3D scaffolds for micro-super organism co-occupation scenarios: "variable-offset" and "iterative-subtraction", followed by two inoculation methods for the biofabrication of scaffolded fungal composites. The HIVEOPOLIS project aims to diversify and complexify urban ecological niches to make them more resilient to future game changers such as climate change. The combined functions of mycelium materials have the potential to provide a therapeutic environment for honeybees and, potentially, humans in the future.

摘要

在建筑历史中,人们对健康室内环境的认知和定义发生了显著变化。如今,分子生物学告诉我们,微生物在人类健康中起着重要作用,与它们隔离不仅会使我们,还会使城市环境中的其他生物面临风险。为了提供一个能让蜜蜂更好地适应环境变化的环境,我们旨在将菌丝体材料的隔热功能与蜂巢结构中的生物活性治疗特性相结合。通过识别菌丝体真菌与蜂巢相关材料的相互作用,运用数字方法设计蜂巢结构,并进行增材制造,我们得以开发出一套设计和制造完整蜂巢的方法。我们提出了两种用于为微型超级生物共栖场景建模3D支架的数字方法:“可变偏移”和“迭代减法”,随后是两种用于生物制造带支架真菌复合材料的接种方法。蜂巢城项目旨在使城市生态位多样化和复杂化,使其对未来诸如气候变化等改变游戏规则的因素更具韧性。菌丝体材料的综合功能有可能为蜜蜂,甚至未来的人类提供一个治疗环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3c6/9220405/75c5852d01c0/biomimetics-07-00075-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验