Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK.
Plant J. 2023 Jun;114(6):1458-1474. doi: 10.1111/tpj.16204. Epub 2023 Apr 11.
Plants respond to changing light intensity in the short term through regulation of light harvesting, electron transfer, and metabolism to mitigate redox stress. A sustained shift in light intensity leads to a long-term acclimation response (LTR). This involves adjustment in the stoichiometry of photosynthetic complexes through de novo synthesis and degradation of specific proteins associated with the thylakoid membrane. The light-harvesting complex II (LHCII) serine/threonine kinase STN7 plays a key role in short-term light harvesting regulation and was also suggested to be crucial to the LTR. Arabidopsis plants lacking STN7 (stn7) shifted to low light experience higher photosystem II (PSII) redox pressure than the wild type or those lacking the cognate phosphatase TAP38 (tap38), while the reverse is true at high light, where tap38 suffers more. In principle, the LTR should allow optimisation of the stoichiometry of photosynthetic complexes to mitigate these effects. We used quantitative label-free proteomics to assess how the relative abundance of photosynthetic proteins varied with growth light intensity in wild-type, stn7, and tap38 plants. All plants were able to adjust photosystem I, LHCII, cytochrome b f, and ATP synthase abundance with changing white light intensity, demonstrating neither STN7 nor TAP38 is crucial to the LTR per se. However, stn7 plants grown for several weeks at low light (LL) or moderate light (ML) still showed high PSII redox pressure and correspondingly lower PSII efficiency, CO assimilation, and leaf area compared to wild-type and tap38 plants, hence the LTR is unable to fully ameliorate these symptoms. In contrast, under high light growth conditions the mutants and wild type behaved similarly. These data are consistent with the paramount role of STN7-dependent LHCII phosphorylation in tuning PSII redox state for optimal growth in LL and ML conditions.
植物通过调节光捕获、电子传递和代谢来应对短期的光强变化,以减轻氧化还原应激。光强的持续变化会导致长期的适应反应(LTR)。这涉及通过从头合成和降解与类囊体膜相关的特定蛋白质来调整光合复合物的化学计量。光捕获复合物 II(LHCII)丝氨酸/苏氨酸激酶 STN7 在短期光捕获调节中发挥关键作用,并且也被认为对 LTR 至关重要。缺乏 STN7(stn7)的拟南芥植物在低光下经历的光系统 II(PSII)氧化还原压力高于野生型或缺乏同源磷酸酶 TAP38(tap38)的植物,而在高光下则相反,tap38 受到的影响更大。原则上,LTR 应该允许优化光合复合物的化学计量,以减轻这些影响。我们使用定量无标记蛋白质组学来评估在野生型、stn7 和 tap38 植物中,光合蛋白的相对丰度如何随生长光强而变化。所有植物都能够根据白光强度调整光系统 I、LHCII、细胞色素 b f 和 ATP 合酶的丰度,这表明 STN7 和 TAP38 都不是 LTR 本身所必需的。然而,在低光(LL)或中光(ML)下生长数周的 stn7 植物仍然表现出高 PSII 氧化还原压力,相应地 PSII 效率、CO 同化和叶片面积低于野生型和 tap38 植物,因此 LTR 无法完全缓解这些症状。相比之下,在高光生长条件下,突变体和野生型的表现相似。这些数据与 STN7 依赖性 LHCII 磷酸化在调节 PSII 氧化还原状态以实现 LL 和 ML 条件下最佳生长方面的首要作用一致。