Suppr超能文献

癌症中的 ATP 和腺苷代谢:治疗增益的探索。

ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain.

机构信息

MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)

出版信息

Pharmacol Rev. 2022 Jul;74(3):797-822. doi: 10.1124/pharmrev.121.000528.

Abstract

Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.

摘要

腺苷是一种古老的代谢调节剂,将能量状态与生理过程(包括免疫调节和细胞增殖)联系起来。肿瘤通过死亡和应激细胞中 ATP 的释放增加及其在外切酶作用下转化为腺苷,从而产生富含腺苷的免疫抑制微环境。因此,腺苷途径成为改善免疫治疗效果的重要治疗靶点。先前的研究主要集中在两种主要的外核苷酸酶,即外核苷酸三磷酸二磷酸水解酶 1/分化群(CD)39 和外 5'-核苷酸酶/CD73,它们催化细胞外 ATP 分解为腺苷,以及随后激活不同亚型的腺苷受体,其抗肿瘤和促肿瘤作用的研究结果喜忧参半。需要考虑控制肿瘤内腺苷水平的冗余途径,包括通过 CD38-外核苷酸焦磷酸酶磷酸二酯酶(ENPP)1-CD73 轴的替代 NAD 失活途径、拮抗的 ATP 再生外切酶途径以及细胞内腺苷摄取及其由腺苷激酶磷酸化等新发现,这需要更有效的治疗方法,这些新发现需要考虑控制肿瘤内腺苷水平的冗余途径,包括通过 CD38-外核苷酸焦磷酸酶磷酸二酯酶(ENPP)1-CD73 轴的替代 NAD 失活途径、拮抗的 ATP 再生外切酶途径以及细胞内腺苷摄取及其由腺苷激酶磷酸化等新发现,这需要更有效的治疗方法,这些新发现需要考虑控制肿瘤内腺苷水平的冗余途径,包括通过 CD38-外核苷酸焦磷酸酶磷酸二酯酶(ENPP)1-CD73 轴的替代 NAD 失活途径、拮抗的 ATP 再生外切酶途径以及细胞内腺苷摄取及其由腺苷激酶磷酸化等新发现,这需要更有效的治疗方法,这些新发现需要考虑控制肿瘤内腺苷水平的冗余途径,包括通过 CD38-外核苷酸焦磷酸酶磷酸二酯酶(ENPP)1-CD73 轴的替代 NAD 失活途径、拮抗的 ATP 再生外切酶途径以及细胞内腺苷摄取及其由腺苷激酶磷酸化等新发现,这需要更有效的治疗方法,这些新发现需要考虑控制肿瘤内腺苷水平的冗余途径,包括通过 CD38-外核苷酸焦磷酸酶磷酸二酯酶(ENPP)1-CD73 轴的替代 NAD 失活途径、拮抗的 ATP 再生外切酶途径以及细胞内腺苷摄取及其由腺苷激酶磷酸化等新发现,这需要更有效的治疗方法,这些新发现

相似文献

2
Adenosine metabolism in the vascular system.血管系统中的腺苷代谢。
Biochem Pharmacol. 2021 May;187:114373. doi: 10.1016/j.bcp.2020.114373. Epub 2020 Dec 16.
4
The role of the CD39-CD73-adenosine pathway in liver disease.CD39-CD73-腺苷通路在肝脏疾病中的作用。
J Cell Physiol. 2021 Feb;236(2):851-862. doi: 10.1002/jcp.29932. Epub 2020 Jul 10.
6
Adenosine Metabolism: Emerging Concepts for Cancer Therapy.腺苷代谢:癌症治疗的新兴概念。
Cancer Cell. 2019 Dec 9;36(6):582-596. doi: 10.1016/j.ccell.2019.10.007.
10
ATP release, generation and hydrolysis in exocrine pancreatic duct cells.外分泌胰腺导管细胞中的ATP释放、生成与水解
Purinergic Signal. 2015 Dec;11(4):533-50. doi: 10.1007/s11302-015-9472-5. Epub 2015 Oct 2.

引用本文的文献

7
Insights from Clinical Trials on A Adenosine Receptor Antagonists for Cancer Treatment.A腺苷受体拮抗剂用于癌症治疗的临床试验见解。
ACS Pharmacol Transl Sci. 2025 May 2;8(6):1498-1512. doi: 10.1021/acsptsci.5c00057. eCollection 2025 Jun 13.

本文引用的文献

2
Long-chain fatty acyl coenzyme A inhibits NME1/2 and regulates cancer metastasis.长链脂肪酸辅酶 A 抑制 NME1/2 并调节癌症转移。
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2117013119. doi: 10.1073/pnas.2117013119. Epub 2022 Mar 8.
10
Overcoming TGFβ-mediated immune evasion in cancer.克服癌症中转化生长因子β介导的免疫逃逸。
Nat Rev Cancer. 2022 Jan;22(1):25-44. doi: 10.1038/s41568-021-00413-6. Epub 2021 Oct 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验