Suppr超能文献

RP-Rs-fMRIomics作为一种新型成像分析策略助力脑胶质瘤诊断

RP-Rs-fMRIomics as a Novel Imaging Analysis Strategy to Empower Diagnosis of Brain Gliomas.

作者信息

Liu Xiaoxue, Li Jianrui, Xu Qiang, Zhang Qirui, Zhou Xian, Pan Hao, Wu Nan, Lu Guangming, Zhang Zhiqiang

机构信息

Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.

Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.

出版信息

Cancers (Basel). 2022 Jun 7;14(12):2818. doi: 10.3390/cancers14122818.

Abstract

Rs-fMRI can provide rich information about functional processes in the brain with a large array of imaging parameters and is also suitable for investigating the biological processes in cerebral gliomas. We aimed to propose an imaging analysis method of RP-Rs-fMRIomics by adopting omics analysis on rs-fMRI with exhaustive regional parameters and subsequently estimating its feasibility on the prediction diagnosis of gliomas. In this retrospective study, preoperative rs-fMRI data were acquired from patients confirmed with diffuse gliomas ( = 176). A total of 420 features were extracted through measuring 14 regional parameters of rs-fMRI as much as available currently in 10 specific narrow frequency bins and three parts of gliomas. With a randomly split training and testing dataset (ratio 7:3), four classifiers were implemented to construct and optimize RP-Rs-fMRIomics models for predicting glioma grade, IDH status and Karnofsky Performance Status scores. The RP-Rs-fMRIomics models (AUROC 0.988, 0.905, 0.801) were superior to the corresponding traditional single rs-fMRI index (AUROC 0.803, 0.731, 0.632) in predicting glioma grade, IDH and survival. The RP-Rs-fMRIomics analysis, featuring high interpretability, was competitive for prediction of glioma grading, IDH genotype and prognosis. The method expanded the clinical application of rs-fMRI and also contributed a new imaging analysis for brain tumor research.

摘要

静息态功能磁共振成像(Rs-fMRI)可以通过大量成像参数提供有关大脑功能过程的丰富信息,也适用于研究脑胶质瘤的生物学过程。我们旨在通过对具有详尽区域参数的Rs-fMRI进行组学分析,提出一种RP-Rs-fMRI组学的成像分析方法,并随后评估其在胶质瘤预测诊断中的可行性。在这项回顾性研究中,从确诊为弥漫性胶质瘤的患者(n = 176)中获取术前Rs-fMRI数据。通过测量Rs-fMRI的14个区域参数,在10个特定窄频率区间和胶质瘤的三个部分尽可能多地提取了总共420个特征。使用随机划分的训练和测试数据集(比例为7:3),实施了四个分类器来构建和优化用于预测胶质瘤分级、异柠檬酸脱氢酶(IDH)状态和卡氏功能状态评分的RP-Rs-fMRI组学模型。RP-Rs-fMRI组学模型(曲线下面积[AUC]分别为0.988、0.905、0.801)在预测胶质瘤分级、IDH和生存率方面优于相应的传统单一Rs-fMRI指标(AUC分别为0.803、0.731、0.632)。具有高可解释性的RP-Rs-fMRI组学分析在预测胶质瘤分级、IDH基因型和预后方面具有竞争力。该方法扩展了Rs-fMRI在临床上的应用,也为脑肿瘤研究贡献了一种新的成像分析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c8/9220978/4944d19f3f51/cancers-14-02818-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验