Stevens Michiel, Nanou Afroditi, Terstappen Leon W M M, Driemel Christiane, Stoecklein Nikolas H, Coumans Frank A W
Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.
General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
Cancers (Basel). 2022 Jun 13;14(12):2916. doi: 10.3390/cancers14122916.
After a CellSearch-processed circulating tumor cell (CTC) sample is imaged, a segmentation algorithm selects nucleic acid positive (DAPI+), cytokeratin-phycoerythrin expressing (CK-PE+) events for further review by an operator. Failures in this segmentation can result in missed CTCs. The CellSearch segmentation algorithm was not designed to handle samples with high cell density, such as diagnostic leukapheresis (DLA) samples. Here, we evaluate deep-learning-based segmentation method StarDist as an alternative to the CellSearch segmentation. CellSearch image archives from 533 whole blood samples and 601 DLA samples were segmented using CellSearch and StarDist and inspected visually. In 442 blood samples from cancer patients, StarDist segmented 99.95% of CTC segmented by CellSearch, produced good outlines for 98.3% of these CTC, and segmented 10% more CTC than CellSearch. Visual inspection of the segmentations of DLA images showed that StarDist continues to perform well when the cell density is very high, whereas CellSearch failed and generated extremely large segmentations (up to 52% of the sample surface). Moreover, in a detailed examination of seven DLA samples, StarDist segmented 20% more CTC than CellSearch. Segmentation is a critical first step for CTC enumeration in dense samples and StarDist segmentation convincingly outperformed CellSearch segmentation.
在对经过CellSearch处理的循环肿瘤细胞(CTC)样本进行成像后,一种分割算法会选择核酸呈阳性(DAPI+)、表达细胞角蛋白-藻红蛋白(CK-PE+)的事件,以供操作人员进一步检查。这种分割过程中的失败可能会导致漏检CTC。CellSearch分割算法并非设计用于处理高细胞密度的样本,如诊断性白细胞分离术(DLA)样本。在此,我们评估基于深度学习的分割方法StarDist,作为CellSearch分割的替代方法。使用CellSearch和StarDist对来自533份全血样本和601份DLA样本的CellSearch图像存档进行分割,并进行视觉检查。在442份癌症患者的血液样本中,StarDist分割出了CellSearch分割出的CTC的99.95%,为其中98.3%的CTC生成了良好的轮廓,并且比CellSearch多分割出了10%的CTC。对DLA图像分割的视觉检查表明,当细胞密度非常高时,StarDist仍然表现良好,而CellSearch失败并生成了极大的分割区域(高达样本表面的52%)。此外,在对7份DLA样本的详细检查中,StarDist比CellSearch多分割出了20%的CTC。分割是密集样本中CTC计数的关键第一步,并且StarDist分割明显优于CellSearch分割。