文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用计算机视觉在水化学应用中进行低成本微藻细胞浓度估算

Low-Cost Microalgae Cell Concentration Estimation in Hydrochemistry Applications Using Computer Vision.

作者信息

Borisova Julia, Morshchinin Ivan V, Nazarova Veronika I, Molodkina Nelli, Nikitin Nikolay O

机构信息

NSS Lab, AI Institute, ITMO University, St. Petersburg 197101, Russia.

GreenTech, ITMO University, St. Petersburg 197101, Russia.

出版信息

Sensors (Basel). 2025 Jul 27;25(15):4651. doi: 10.3390/s25154651.


DOI:10.3390/s25154651
PMID:40807815
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349023/
Abstract

Accurate and efficient estimation of microalgae cell concentration is critical for applications in hydrochemical monitoring, biofuel production, pharmaceuticals, and ecological studies. Traditional methods, such as manual counting with a hemocytometer, are time-consuming and prone to human error, while automated systems are often costly and require extensive training data. This paper presents a low-cost, automated approach for estimating cell concentration in suspensions using classical computer vision techniques. The proposed method eliminates the need for deep learning by leveraging the Hough circle transform to detect and count cells in microscope images, combined with a conversion factor to translate pixel measurements into metric units for direct concentration calculation (cells/mL). Validation against manual hemocytometer counts demonstrated strong agreement, with a Pearson correlation coefficient of 0.96 and a mean percentage difference of 17.96%. The system achieves rapid processing (under 30 s per image) and offers interpretability, allowing specialists to verify results visually. Key advantages include affordability, minimal hardware requirements, and adaptability to other microbiological applications. Limitations, such as sensitivity to cell clumping and impurities, are discussed. This work provides a practical, accessible solution for laboratories lacking expensive automated equipment, bridging the gap between manual methods and high-end technologies.

摘要

准确高效地估算微藻细胞浓度对于水化学监测、生物燃料生产、制药和生态研究等应用至关重要。传统方法,如使用血细胞计数器进行人工计数,既耗时又容易出现人为误差,而自动化系统通常成本高昂且需要大量训练数据。本文提出了一种低成本的自动化方法,利用经典计算机视觉技术估算悬浮液中的细胞浓度。该方法通过利用霍夫圆变换来检测和计数显微镜图像中的细胞,结合一个转换因子将像素测量值转换为公制单位以直接计算浓度(细胞/毫升),从而无需深度学习。与人工血细胞计数器计数的验证结果显示出高度一致性,皮尔逊相关系数为0.96,平均百分比差异为17.96%。该系统实现了快速处理(每张图像不到30秒)并具有可解释性,使专家能够直观地验证结果。主要优点包括价格实惠、硬件要求最低以及对其他微生物应用的适应性。文中还讨论了该方法的局限性,如对细胞聚集和杂质的敏感性。这项工作为缺乏昂贵自动化设备的实验室提供了一种实用、便捷的解决方案,弥合了人工方法与高端技术之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bb99eb716e61/sensors-25-04651-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/281c5ed3d2b7/sensors-25-04651-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/0501c83c56f6/sensors-25-04651-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bec0f5079751/sensors-25-04651-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/1ff6734c738f/sensors-25-04651-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/6ba138ad944a/sensors-25-04651-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/8e4f80f7f19b/sensors-25-04651-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/9acde0527fee/sensors-25-04651-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/c587152f0124/sensors-25-04651-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/461641ab8905/sensors-25-04651-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/4fd49c306444/sensors-25-04651-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/d449ec5c09d0/sensors-25-04651-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/3e19d33ec28d/sensors-25-04651-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/55c3fde0afcd/sensors-25-04651-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bb6837d5323a/sensors-25-04651-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/281d506f965e/sensors-25-04651-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bb99eb716e61/sensors-25-04651-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/281c5ed3d2b7/sensors-25-04651-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/0501c83c56f6/sensors-25-04651-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bec0f5079751/sensors-25-04651-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/1ff6734c738f/sensors-25-04651-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/6ba138ad944a/sensors-25-04651-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/8e4f80f7f19b/sensors-25-04651-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/9acde0527fee/sensors-25-04651-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/c587152f0124/sensors-25-04651-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/461641ab8905/sensors-25-04651-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/4fd49c306444/sensors-25-04651-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/d449ec5c09d0/sensors-25-04651-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/3e19d33ec28d/sensors-25-04651-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/55c3fde0afcd/sensors-25-04651-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bb6837d5323a/sensors-25-04651-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/281d506f965e/sensors-25-04651-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0579/12349023/bb99eb716e61/sensors-25-04651-g016.jpg

相似文献

[1]
Low-Cost Microalgae Cell Concentration Estimation in Hydrochemistry Applications Using Computer Vision.

Sensors (Basel). 2025-7-27

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[4]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[5]
Response surface optimization of sedimentation efficiency for sustainable green microalgae harvesting using automated non-invasive methods.

Microb Cell Fact. 2025-7-11

[6]
Point-cloud segmentation with in-silico data augmentation for prostate cancer treatment.

Med Phys. 2025-4-3

[7]
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.

Health Technol Assess. 2024-8

[8]
Variation within and between digital pathology and light microscopy for the diagnosis of histopathology slides: blinded crossover comparison study.

Health Technol Assess. 2025-7

[9]
Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework.

Sci Rep. 2025-7-11

[10]
Generative evidential synthesis with integrated segmentation framework for MR-only radiation therapy treatment planning.

Med Phys. 2025-7

本文引用的文献

[1]
Loss of state transitions in Bryopsidales macroalgae and kleptoplastic sea slugs (Gastropoda, Sacoglossa).

Commun Biol. 2025-6-5

[2]
A combined interactive online simulation and face-to-face laboratory enable undergraduate student proficiency in hemocytometer use, cell density and viability calculations.

Immunol Cell Biol. 2025-2

[3]
Deep Learning-Based Automatic Duckweed Counting Using StarDist and Its Application on Measuring Growth Inhibition Potential of Rare Earth Elements as Contaminants of Emerging Concerns.

Toxics. 2023-8-8

[4]
Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning.

Asian Pac J Cancer Prev. 2023-2-1

[5]
RU-Net: An improved U-Net placenta segmentation network based on ResNet.

Comput Methods Programs Biomed. 2022-12

[6]
Cellpose 2.0: how to train your own model.

Nat Methods. 2022-12

[7]
Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning.

Comput Methods Programs Biomed. 2022-8

[8]
StarDist Image Segmentation Improves Circulating Tumor Cell Detection.

Cancers (Basel). 2022-6-13

[9]
A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches.

Artif Intell Rev. 2022

[10]
Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net.

Math Biosci Eng. 2020-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索