Borisova Julia, Morshchinin Ivan V, Nazarova Veronika I, Molodkina Nelli, Nikitin Nikolay O
NSS Lab, AI Institute, ITMO University, St. Petersburg 197101, Russia.
GreenTech, ITMO University, St. Petersburg 197101, Russia.
Sensors (Basel). 2025 Jul 27;25(15):4651. doi: 10.3390/s25154651.
Accurate and efficient estimation of microalgae cell concentration is critical for applications in hydrochemical monitoring, biofuel production, pharmaceuticals, and ecological studies. Traditional methods, such as manual counting with a hemocytometer, are time-consuming and prone to human error, while automated systems are often costly and require extensive training data. This paper presents a low-cost, automated approach for estimating cell concentration in suspensions using classical computer vision techniques. The proposed method eliminates the need for deep learning by leveraging the Hough circle transform to detect and count cells in microscope images, combined with a conversion factor to translate pixel measurements into metric units for direct concentration calculation (cells/mL). Validation against manual hemocytometer counts demonstrated strong agreement, with a Pearson correlation coefficient of 0.96 and a mean percentage difference of 17.96%. The system achieves rapid processing (under 30 s per image) and offers interpretability, allowing specialists to verify results visually. Key advantages include affordability, minimal hardware requirements, and adaptability to other microbiological applications. Limitations, such as sensitivity to cell clumping and impurities, are discussed. This work provides a practical, accessible solution for laboratories lacking expensive automated equipment, bridging the gap between manual methods and high-end technologies.
准确高效地估算微藻细胞浓度对于水化学监测、生物燃料生产、制药和生态研究等应用至关重要。传统方法,如使用血细胞计数器进行人工计数,既耗时又容易出现人为误差,而自动化系统通常成本高昂且需要大量训练数据。本文提出了一种低成本的自动化方法,利用经典计算机视觉技术估算悬浮液中的细胞浓度。该方法通过利用霍夫圆变换来检测和计数显微镜图像中的细胞,结合一个转换因子将像素测量值转换为公制单位以直接计算浓度(细胞/毫升),从而无需深度学习。与人工血细胞计数器计数的验证结果显示出高度一致性,皮尔逊相关系数为0.96,平均百分比差异为17.96%。该系统实现了快速处理(每张图像不到30秒)并具有可解释性,使专家能够直观地验证结果。主要优点包括价格实惠、硬件要求最低以及对其他微生物应用的适应性。文中还讨论了该方法的局限性,如对细胞聚集和杂质的敏感性。这项工作为缺乏昂贵自动化设备的实验室提供了一种实用、便捷的解决方案,弥合了人工方法与高端技术之间的差距。
Sensors (Basel). 2025-7-27
Arch Ital Urol Androl. 2025-6-30
Asian Pac J Cancer Prev. 2023-2-1
Comput Methods Programs Biomed. 2022-12
Nat Methods. 2022-12
Comput Methods Programs Biomed. 2022-8
Cancers (Basel). 2022-6-13
Math Biosci Eng. 2020-12-18