文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用未分割图像进行活细胞分析,以研究癌细胞对改良T细胞疗法的反应。

Live-cell analyses with unsegmented images to study cancer cell response to modified T cell therapy.

作者信息

Epstein Leo, Weiner Adam C, Verma Archit, Saedi Mozhgan, Carnevale Julia, Marson Alex, Engelhardt Barbara E

机构信息

Gladstone Institutes, Institute of Data Science and Biotechnology, San Francisco, CA, USA.

Humboldt Universitat zu Berlin, Informatik, Unter den Linden 6, 10117 Berlin, Germany.

出版信息

bioRxiv. 2025 Jun 7:2025.06.04.657687. doi: 10.1101/2025.06.04.657687.


DOI:10.1101/2025.06.04.657687
PMID:40502136
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12157423/
Abstract

Live-cell imaging (LCI) of modified T cells co-cultured with cancer cells is commonly used to quantify T cell anti-cancer function. Videos captured by LCI show complex multi-cell behavioral phenotypes that go beyond simple cancer cell fluorescence measurements. Here, we develop an unsupervised analysis workflow to characterize LCI data generated using the Incucyte imaging platform. Unlike most LCI analyses, we avoid cell segmentation due to the low spatiotemporal resolution of the LCI videos and high levels of cell-cell contact. Instead, we develop methods that identify global aggregation patterns and local cellular keypoints to characterize the multicellular interactions that determine cancer cell sensitivity to, or escape from, T cell surveillance. We demonstrate our segmentation-free live-cell behavioral analysis (SF-LCBA) methods on TCR T cells from four donors with varying proportions of cells with a beneficial RASA2 knockout and effector-to-target initial concentrations in a co-culture with A375 melanoma cells. We find that different T cell modifications affect the spatiotemporal dynamics of multicellular aggregate formation. In particular, we show that fewer and smaller cancer cell aggregates form at high ratios of effector T cells to target cancer cells and high titrations of T cells with RASA2 knockouts. Our SF-LCBA method identifies, characterizes, and tracks cellular aggregate formation in datasets that are unsuitable for cell segmentation and tracking, opening the door to more therapeutically-relevant measurements of modified T cell therapy cell behavioral phenotypes from LCI data.

摘要

与癌细胞共培养的修饰T细胞的活细胞成像(LCI)通常用于量化T细胞的抗癌功能。LCI捕获的视频显示了复杂的多细胞行为表型,这超出了简单的癌细胞荧光测量范围。在这里,我们开发了一种无监督分析工作流程,以表征使用Incucyte成像平台生成的LCI数据。与大多数LCI分析不同,由于LCI视频的时空分辨率低以及细胞间接触程度高,我们避免了细胞分割。相反,我们开发了一些方法,可识别全局聚集模式和局部细胞关键点,以表征决定癌细胞对T细胞监视的敏感性或逃避的多细胞相互作用。我们在来自四个供体的TCR T细胞上展示了我们的无分割活细胞行为分析(SF-LCBA)方法,这些供体在与A375黑色素瘤细胞共培养中具有不同比例的具有有益RASA2基因敲除的细胞以及效应细胞与靶细胞的初始浓度。我们发现不同的T细胞修饰会影响多细胞聚集体形成的时空动态。特别是,我们表明,在效应T细胞与靶癌细胞的高比例以及RASA2基因敲除的T细胞的高滴定度下,形成的癌细胞聚集体更少且更小。我们的SF-LCBA方法可识别、表征和跟踪不适用于细胞分割和跟踪的数据集中的细胞聚集体形成,为从LCI数据中对修饰T细胞治疗细胞行为表型进行更多与治疗相关的测量打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/07de675bf4d4/nihpp-2025.06.04.657687v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/a48a76c4c753/nihpp-2025.06.04.657687v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/a0324e63fd2c/nihpp-2025.06.04.657687v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/7e3afd977aa0/nihpp-2025.06.04.657687v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/d74e2baa9542/nihpp-2025.06.04.657687v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/07de675bf4d4/nihpp-2025.06.04.657687v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/a48a76c4c753/nihpp-2025.06.04.657687v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/a0324e63fd2c/nihpp-2025.06.04.657687v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/7e3afd977aa0/nihpp-2025.06.04.657687v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/d74e2baa9542/nihpp-2025.06.04.657687v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/12157423/07de675bf4d4/nihpp-2025.06.04.657687v1-f0005.jpg

相似文献

[1]
Live-cell analyses with unsegmented images to study cancer cell response to modified T cell therapy.

bioRxiv. 2025-6-7

[2]
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).

Cochrane Database Syst Rev. 2018-7-12

[3]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[4]
Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.

Cochrane Database Syst Rev. 2017-12-28

[5]
Interventions for promoting habitual exercise in people living with and beyond cancer.

Cochrane Database Syst Rev. 2018-9-19

[6]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

[7]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[8]
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.

Cochrane Database Syst Rev. 2017-2-27

[9]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

[10]
Nebulised hypertonic saline for cystic fibrosis.

Cochrane Database Syst Rev. 2023-6-14

本文引用的文献

[1]
Understanding TCR T cell knockout behavior using interpretable machine learning.

Pac Symp Biocomput. 2025

[2]
Beyond the blood: expanding CAR T cell therapy to solid tumors.

Nat Biotechnol. 2025-4

[3]
Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial.

Lancet. 2024-4-13

[4]
BEHAV3D: a 3D live imaging platform for comprehensive analysis of engineered T cell behavior and tumor response.

Nat Protoc. 2024-7

[5]
The cancer-immunity cycle: Indication, genotype, and immunotype.

Immunity. 2023-10-10

[6]
Bridging live-cell imaging and next-generation cancer treatment.

Nat Rev Cancer. 2023-11

[7]
Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects.

Nat Commun. 2023-6-10

[8]
Multiplexed and reproducible high content screening of live and fixed cells using Dye Drop.

Nat Commun. 2022-11-14

[9]
Cellpose 2.0: how to train your own model.

Nat Methods. 2022-12

[10]
Multiplexed high-throughput immune cell imaging reveals molecular health-associated phenotypes.

Sci Adv. 2022-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索