Rehman Zaka Ur, Ahmad Fauzi Mohammad Faizal, Wan Ahmad Wan Siti Halimatul Munirah, Abas Fazly Salleh, Cheah Phaik-Leng, Chiew Seow-Fan, Looi Lai-Meng
Centre for Image and Vision Computing, CoE for Artificial Intelligence, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.
Faculty of Artificial Intelligence and Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.
Diagnostics (Basel). 2025 Jun 22;15(13):1584. doi: 10.3390/diagnostics15131584.
Breast cancer remains a critical health concern worldwide, with histopathological analysis of tissue biopsies serving as the clinical gold standard for diagnosis. Manual evaluation of histopathology images is time-intensive and requires specialized expertise, often resulting in variability in diagnostic outcomes. In silver in situ hybridization (SISH) images, accurate nuclei detection is essential for precise histo-scoring of HER2 gene expression, directly impacting treatment decisions. This study presents a scalable and automated deep learning framework for nuclei detection in HER2-SISH whole slide images (WSIs), utilizing a novel dataset of 100 expert-marked regions extracted from 20 WSIs collected at the University of Malaya Medical Center (UMMC). The proposed two-stage approach combines a pretrained Stardist model with image processing-based annotations, followed by fine tuning on our domain-specific dataset to improve generalization. The fine-tuned model achieved substantial improvements over both the pretrained Stardist model and a conventional watershed segmentation baseline. Quantitatively, the proposed method attained an average F1-score of 98.1% for visual assessments and 97.4% for expert-marked nuclei, outperforming baseline methods across all metrics. Additionally, training and validation performance curves demonstrate stable model convergence over 100 epochs. These results highlight the robustness of our approach in handling the complex morphological characteristics of SISH-stained nuclei. Our framework supports pathologists by offering reliable, automated nuclei detection in HER2 scoring workflows, contributing to diagnostic consistency and efficiency in clinical pathology.
乳腺癌仍然是全球范围内一个至关重要的健康问题,组织活检的组织病理学分析是临床诊断的金标准。对组织病理学图像进行人工评估耗时且需要专业知识,常常导致诊断结果的变异性。在银原位杂交(SISH)图像中,准确的细胞核检测对于HER2基因表达的精确组织评分至关重要,直接影响治疗决策。本研究提出了一种可扩展的自动化深度学习框架,用于在HER2-SISH全切片图像(WSIs)中进行细胞核检测,利用从马来亚大学医学中心(UMMC)收集的20张WSIs中提取的100个专家标记区域的新数据集。所提出的两阶段方法将预训练的Stardist模型与基于图像处理的注释相结合,然后在我们的特定领域数据集上进行微调以提高泛化能力。微调后的模型相对于预训练的Stardist模型和传统的分水岭分割基线都有显著改进。在定量方面,所提出的方法在视觉评估中平均F1分数达到98.1%,在专家标记的细胞核方面达到97.4%,在所有指标上均优于基线方法。此外,训练和验证性能曲线表明在100个epoch上模型收敛稳定。这些结果突出了我们的方法在处理SISH染色细胞核复杂形态特征方面的稳健性。我们的框架通过在HER2评分工作流程中提供可靠的自动化细胞核检测来支持病理学家,有助于临床病理学诊断的一致性和效率。