Suppr超能文献

当前浊度分析方法在分析纤维蛋白纤维和其他丝状网络中的适用性。

The Applicability of Current Turbidimetric Approaches for Analyzing Fibrin Fibers and Other Filamentous Networks.

机构信息

Department of Physics, East Carolina University, Greenville, NC 27858, USA.

Department of Anatomy & Cell Biology, East Carolina University, Greenville, NC 27858, USA.

出版信息

Biomolecules. 2022 Jun 9;12(6):807. doi: 10.3390/biom12060807.

Abstract

Turbidimetry is an experimental technique often used to study the structure of filamentous networks. To extract structural properties such as filament diameter from turbidimetric data, simplifications to light scattering theory must be employed. In this work, we evaluate the applicability of three commonly utilized turbidimetric analysis approaches, each using slightly different simplifications. We make a specific application towards analyzing fibrin fibers, which form the structural scaffold of blood clots, but the results are generalizable. Numerical simulations were utilized to assess the applicability of each approach across a range of fiber lengths and diameters. Simulation results indicated that all three turbidimetric approaches commonly underestimate fiber diameter, and that the “Carr-Hermans” approach, utilizing wavelengths in the range of 500−800 nm, provided <10% error for the largest number of diameter/length combinations. These theoretical results were confirmed, under select conditions, via the comparison of fiber diameters extracted from experimental turbidimetric data, with diameters obtained using super-resolution microscopy.

摘要

比浊法是一种常用于研究丝状网络结构的实验技术。为了从比浊数据中提取丝状直径等结构特性,必须采用对光散射理论的简化。在这项工作中,我们评估了三种常用比浊分析方法的适用性,每种方法都采用了略有不同的简化。我们特别将其应用于分析纤维蛋白纤维,纤维蛋白纤维形成血栓的结构支架,但结果具有普遍性。数值模拟用于评估每种方法在一系列纤维长度和直径范围内的适用性。模拟结果表明,三种比浊法通常都低估了纤维直径,而利用波长在 500-800nm 范围内的“Carr-Hermans”方法为最大数量的直径/长度组合提供了 <10%的误差。在某些条件下,通过将从实验比浊数据中提取的纤维直径与使用超分辨率显微镜获得的直径进行比较,验证了这些理论结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da1d/9221518/2a028e6f7649/biomolecules-12-00807-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验