Suppr超能文献

用于特征选择问题的改进二进制蚱蜢优化算法

Improved Binary Grasshopper Optimization Algorithm for Feature Selection Problem.

作者信息

Wang Gui-Ling, Chu Shu-Chuan, Tian Ai-Qing, Liu Tao, Pan Jeng-Shyang

机构信息

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

College of Science and Engineering, Flinders University, Adelaide 5042, Australia.

出版信息

Entropy (Basel). 2022 May 31;24(6):777. doi: 10.3390/e24060777.

Abstract

The migration and predation of grasshoppers inspire the grasshopper optimization algorithm (GOA). It can be applied to practical problems. The binary grasshopper optimization algorithm (BGOA) is used for binary problems. To improve the algorithm's exploration capability and the solution's quality, this paper modifies the step size in BGOA. The step size is expanded and three new transfer functions are proposed based on the improvement. To demonstrate the availability of the algorithm, a comparative experiment with BGOA, particle swarm optimization (PSO), and binary gray wolf optimizer (BGWO) is conducted. The improved algorithm is tested on 23 benchmark test functions. Wilcoxon rank-sum and Friedman tests are used to verify the algorithm's validity. The results indicate that the optimized algorithm is significantly more excellent than others in most functions. In the aspect of the application, this paper selects 23 datasets of UCI for feature selection implementation. The improved algorithm yields higher accuracy and fewer features.

摘要

蝗虫的迁移和捕食行为启发了蝗虫优化算法(GOA)。它可应用于实际问题。二进制蝗虫优化算法(BGOA)用于解决二进制问题。为提高算法的探索能力和解决方案的质量,本文对BGOA中的步长进行了修改。扩大了步长,并在此改进基础上提出了三个新的传递函数。为证明该算法的有效性,进行了与BGOA、粒子群优化算法(PSO)和二进制灰狼优化器(BGWO)的对比实验。在23个基准测试函数上对改进算法进行了测试。使用Wilcoxon秩和检验和Friedman检验来验证算法的有效性。结果表明,优化后的算法在大多数函数上明显优于其他算法。在应用方面,本文选择UCI的23个数据集进行特征选择实现。改进算法具有更高的准确率和更少的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda4/9223162/b813013f5d49/entropy-24-00777-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验