Peng Lemin, Cai Zhennao, Heidari Ali Asghar, Zhang Lejun, Chen Huiling
Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
J Adv Res. 2023 Nov;53:261-278. doi: 10.1016/j.jare.2023.01.014. Epub 2023 Jan 20.
The main feature selection methods include filter, wrapper-based, and embedded methods. Because of its characteristics, the wrapper method must include a swarm intelligence algorithm, and its performance in feature selection is closely related to the algorithm's quality. Therefore, it is essential to choose and design a suitable algorithm to improve the performance of the feature selection method based on the wrapper. Harris hawks optimization (HHO) is a superb optimization approach that has just been introduced. It has a high convergence rate and a powerful global search capability but it has an unsatisfactory optimization effect on high dimensional problems or complex problems. Therefore, we introduced a hierarchy to improve HHO's ability to deal with complex problems and feature selection.
To make the algorithm obtain good accuracy with fewer features and run faster in feature selection, we improved HHO and named it EHHO. On 30 UCI datasets, the improved HHO (EHHO) can achieve very high classification accuracy with less running time and fewer features.
We first conducted extensive experiments on 23 classical benchmark functions and compared EHHO with many state-of-the-art metaheuristic algorithms. Then we transform EHHO into binary EHHO (bEHHO) through the conversion function and verify the algorithm's ability in feature extraction on 30 UCI data sets.
Experiments on 23 benchmark functions show that EHHO has better convergence speed and minimum convergence than other peers. At the same time, compared with HHO, EHHO can significantly improve the weakness of HHO in dealing with complex functions. Moreover, on 30 datasets in the UCI repository, the performance of bEHHO is better than other comparative optimization algorithms.
Compared with the original bHHO, bEHHO can achieve excellent classification accuracy with fewer features and is also better than bHHO in running time.
主要的特征选择方法包括过滤法、基于包装器的方法和嵌入式方法。由于其特性,基于包装器的方法必须包含一种群体智能算法,并且其在特征选择中的性能与算法质量密切相关。因此,选择并设计一种合适的算法以提高基于包装器的特征选择方法的性能至关重要。哈里斯鹰优化算法(HHO)是一种刚被提出的出色优化方法。它具有较高的收敛速度和强大的全局搜索能力,但对高维问题或复杂问题的优化效果并不理想。因此,我们引入了一种层次结构来提高HHO处理复杂问题和进行特征选择的能力。
为使算法在特征选择中能用更少的特征获得良好的准确率并运行得更快,我们改进了HHO并将其命名为EHHO。在30个UCI数据集上,改进后的HHO(EHHO)能够以更少的运行时间和更少的特征实现非常高的分类准确率。
我们首先在23个经典基准函数上进行了广泛实验,并将EHHO与许多先进的元启发式算法进行比较。然后通过转换函数将EHHO转换为二进制EHHO(bEHHO),并在30个UCI数据集上验证该算法的特征提取能力。
在23个基准函数上的实验表明,EHHO比其他同类算法具有更好的收敛速度和最小收敛值。同时,与HHO相比,EHHO能显著改善HHO在处理复杂函数时的不足。此外,在UCI库中的30个数据集上,bEHHO的性能优于其他比较优化算法。
与原始的bHHO相比,bEHHO能用更少的特征实现出色的分类准确率,并且在运行时间上也优于bHHO。