整合药物挖掘揭示抑制丛状神经纤维瘤的可行策略。

Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas.

作者信息

Brown Rebecca M, Farouk Sait Sameer, Dunn Griffin, Sullivan Alanna, Bruckert Benjamin, Sun Daochun

机构信息

Medicine, Hematology and Medical Oncology, Neurosurgery, The Mount Sinai Hospital, New York, NY 10029, USA.

Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Brain Sci. 2022 May 31;12(6):720. doi: 10.3390/brainsci12060720.

Abstract

Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes, affecting up to 1 in 2500 individuals. Up to half of patients with NF1 develop benign nerve sheath tumors called plexiform neurofibromas (PNs), characterized by biallelic NF1 loss. PNs can grow to immense sizes, cause extensive morbidity, and harbor a 15% lifetime risk of malignant transformation. Increasingly, molecular sequencing and drug screening data from various preclinical murine and human PN cell lines, murine models, and human PN tissues are available to help identify salient treatments for PNs. Despite this, Selumetinib, a MEK inhibitor, is the only currently FDA-approved pharmacotherapy for symptomatic and inoperable PNs in pediatric NF1 patients. The discovery of alternative and additional treatments has been hampered by the rarity of the disease, which makes prioritizing drugs to be tested in future clinical trials immensely important. Here, we propose a gene regulatory network-based integrated analysis to mine high-throughput cell line-based drug data combined with transcriptomes from resected human PN tumors. Conserved network modules were characterized and served as drug fingerprints reflecting the biological connections among drug effects and the inherent properties of PN cell lines and tissue. Drug candidates were ranked, and the therapeutic potential of drug combinations was evaluated via computational predication. Auspicious therapeutic agents and drug combinations were proposed for further investigation in preclinical and clinical trials.

摘要

1型神经纤维瘤病(NF1)是最常见的遗传性肿瘤易感性综合征之一,每2500人中就有1人受其影响。高达半数的NF1患者会发展出称为丛状神经纤维瘤(PNs)的良性神经鞘瘤,其特征是双等位基因NF1缺失。PNs可生长到巨大尺寸,导致广泛的发病率,并存在15%的终生恶变风险。越来越多来自各种临床前小鼠和人类PN细胞系、小鼠模型以及人类PN组织的分子测序和药物筛选数据,有助于确定针对PNs的有效治疗方法。尽管如此,MEK抑制剂司美替尼是目前美国食品药品监督管理局(FDA)批准的唯一用于治疗小儿NF1患者有症状且无法手术切除的PNs的药物疗法。由于该疾病罕见,替代和额外治疗方法的发现受到了阻碍,这使得在未来临床试验中确定优先测试的药物极为重要。在此,我们提出一种基于基因调控网络的综合分析方法,以挖掘基于高通量细胞系的药物数据,并结合来自切除的人类PN肿瘤的转录组。对保守的网络模块进行了表征,并将其用作药物指纹,反映药物作用之间的生物学联系以及PN细胞系和组织的固有特性。对候选药物进行排名,并通过计算预测评估药物组合的治疗潜力。我们提出了有前景的治疗药物和药物组合,以供在临床前和临床试验中进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3094/9221468/d32a14d74347/brainsci-12-00720-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索