Suppr超能文献

精神分裂症患者大脑动态重构的频率特异性分析

Frequency-Specific Analysis of the Dynamic Reconfiguration of the Brain in Patients with Schizophrenia.

作者信息

Yang Yanli, Zhang Yang, Xiang Jie, Wang Bin, Li Dandan, Cheng Xueting, Liu Tao, Cui Xiaohong

机构信息

College of Information and Computer, Taiyuan University of Technology, No. 209, Daxue Street, Yuci District, Jinzhong 030024, China.

出版信息

Brain Sci. 2022 Jun 1;12(6):727. doi: 10.3390/brainsci12060727.

Abstract

The analysis of resting-state fMRI signals usually focuses on the low-frequency range/band (0.01−0.1 Hz), which does not cover all aspects of brain activity. Studies have shown that distinct frequency bands can capture unique fluctuations in brain activity, with high-frequency signals (>0.1 Hz) providing valuable information for the diagnosis of schizophrenia. We hypothesized that it is meaningful to study the dynamic reconfiguration of schizophrenia through different frequencies. Therefore, this study used resting-state functional magnetic resonance (RS-fMRI) data from 42 schizophrenia and 40 normal controls to investigate dynamic network reconfiguration in multiple frequency bands (0.01−0.25 Hz, 0.01−0.027 Hz, 0.027−0.073 Hz, 0.073−0.198 Hz, 0.198−0.25 Hz). Based on the time-varying dynamic network constructed for each frequency band, we compared the dynamic reconfiguration of schizophrenia and normal controls by calculating the recruitment and integration. The experimental results showed that the differences between schizophrenia and normal controls are observed in the full frequency, which is more significant in slow3. In addition, as visual network, attention network, and default mode network differ a lot from each other, they can show a high degree of connectivity, which indicates that the functional network of schizophrenia is affected by the abnormal brain state in these areas. These shreds of evidence provide a new perspective and promote the current understanding of the characteristics of dynamic brain networks in schizophrenia.

摘要

静息态功能磁共振成像(fMRI)信号分析通常聚焦于低频范围/频段(0.01−0.1赫兹),但这并未涵盖大脑活动的所有方面。研究表明,不同频段能够捕捉大脑活动中独特的波动,高频信号(>0.1赫兹)为精神分裂症的诊断提供了有价值的信息。我们假设通过不同频率研究精神分裂症的动态重构具有重要意义。因此,本研究使用了42名精神分裂症患者和40名正常对照的静息态功能磁共振(RS-fMRI)数据,以研究多个频段(0.01−0.25赫兹、0.01−0.027赫兹、0.027−0.073赫兹、0.073−0.198赫兹、0.198−0.25赫兹)下的动态网络重构。基于为每个频段构建的时变动态网络,我们通过计算招募和整合来比较精神分裂症患者和正常对照的动态重构。实验结果表明,在全频段均观察到精神分裂症患者与正常对照之间的差异,在慢波3频段更为显著。此外,由于视觉网络、注意力网络和默认模式网络彼此差异较大,它们可表现出高度的连通性,这表明精神分裂症的功能网络受到这些区域异常脑状态的影响。这些证据提供了一个新的视角,并促进了当前对精神分裂症动态脑网络特征的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/713c/9221032/073fb9315348/brainsci-12-00727-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验