Suppr超能文献

多模态功能连接网络融合用于精神分裂症诊断。

Multiple functional connectivity networks fusion for schizophrenia diagnosis.

机构信息

PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, and Jiangsu Key Lab of Image and Video Understanding for Social Security, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.

出版信息

Med Biol Eng Comput. 2020 Aug;58(8):1779-1790. doi: 10.1007/s11517-020-02193-x. Epub 2020 Jun 3.

Abstract

Accurate diagnosis of schizophrenia is of great importance to patients and clinicians. Recent studies have found that different frequency bands contain complementary information for diagnosis and prognosis. However, conventional multiple frequency functional connectivity (FC) networks using Pearson's correlation coefficient (PCC) are usually based on pairwise correlations among different brain regions on single frequency band, while ignoring the interactions between regions in different frequency bands, the relationship among different networks, and the nonlinear properties of blood-oxygen-level-dependent (BOLD) signal. To take into account these relationships, we propose in this study a multiple networks fusion method for schizophrenia diagnosis. Specifically, we first construct FC networks within the same and across frequency from the resting-state functional magnetic resonance imaging (rs-fMRI) time series by using extended maximal information coefficient (eMIC) based on four frequency bands: slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz), and slow-2 (0.198-0.25 Hz). Then, these networks are combined nonlinearly through network fusion, which generates a unified network for each subject. Features extracted from the unified network are used for final classification. Experimental results demonstrated that the interaction between distinct brain regions across different frequency bands can significantly improve the classification performance, comparing with conventional FC analysis based on specific or entire low-frequency band. The promising results suggest that our proposed framework would be a useful tool in computer-aided diagnosis of schizophrenia. Graphical abstract The flowchart of proposed classification framework.

摘要

准确诊断精神分裂症对患者和临床医生都非常重要。最近的研究发现,不同的频带包含互补的诊断和预后信息。然而,传统的基于皮尔逊相关系数 (PCC) 的多频带功能连接 (FC) 网络通常基于单频带中不同脑区之间的成对相关,而忽略了不同频带之间的区域之间的相互作用、不同网络之间的关系以及血氧水平依赖 (BOLD) 信号的非线性特性。为了考虑到这些关系,我们在这项研究中提出了一种用于精神分裂症诊断的多网络融合方法。具体来说,我们首先使用基于四个频带的扩展最大信息系数 (eMIC) 从静息态功能磁共振成像 (rs-fMRI) 时间序列中构建同频和跨频的 FC 网络:慢波-5 (0.01-0.027 Hz)、慢波-4 (0.027-0.073 Hz)、慢波-3 (0.073-0.198 Hz) 和慢波-2 (0.198-0.25 Hz)。然后,通过网络融合非线性地组合这些网络,为每个受试者生成一个统一的网络。从统一网络中提取的特征用于最终分类。实验结果表明,不同频带之间不同脑区之间的相互作用可以显著提高分类性能,与基于特定或整个低频带的传统 FC 分析相比。有前景的结果表明,我们提出的框架将成为精神分裂症计算机辅助诊断的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验