Suppr超能文献

马来西亚推特用户对新冠疫苗加强针的文本挖掘及情绪决定因素

Text Mining and Determinants of Sentiments towards the COVID-19 Vaccine Booster of Twitter Users in Malaysia.

作者信息

Ong Song-Quan, Pauzi Maisarah Binti Mohamed, Gan Keng Hoon

机构信息

Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia.

School of Computer Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.

出版信息

Healthcare (Basel). 2022 May 27;10(6):994. doi: 10.3390/healthcare10060994.

Abstract

Vaccination is the primary preventive measure against the COVID-19 infection, and an additional vaccine dosage is crucial to increase the immunity level of the community. However, public bias, as reflected on social media, may have a significant impact on the vaccination program. We aim to investigate the attitudes to the COVID-19 vaccination booster in Malaysia by using sentiment analysis. We retrieved 788 tweets containing COVID-19 vaccine booster keywords and identified the common topics discussed in tweets that related to the booster by using latent Dirichlet allocation (LDA) and performed sentiment analysis to understand the determinants for the sentiments to receiving the vaccination booster in Malaysia. We identified three important LDA topics: (1) type of vaccination booster; (2) effects of vaccination booster; (3) vaccination program operation. The type of vaccination further transformed into attributes of "az", "pfizer", "sinovac", and "mix" for determinants' assessments. Effect and type of vaccine booster associated stronger than program operation topic for the sentiments, and "pfizer" and "mix" were the strongest determinants of the tweet's sentiments after the Boruta feature selection and validated from the performance of regression analysis. This study provided a comprehensive workflow to retrieve and identify important healthcare topic from social media.

摘要

疫苗接种是预防新冠病毒感染的主要措施,额外的疫苗剂量对于提高社区免疫力水平至关重要。然而,社交媒体上反映出的公众偏见可能会对疫苗接种计划产生重大影响。我们旨在通过情感分析来调查马来西亚民众对新冠疫苗加强针的态度。我们检索了788条包含新冠疫苗加强针关键词的推文,并使用潜在狄利克雷分配(LDA)确定推文中与加强针相关的常见讨论话题,然后进行情感分析,以了解马来西亚民众对接种疫苗加强针持何种态度的决定因素。我们确定了三个重要的LDA主题:(1)疫苗加强针的类型;(2)疫苗加强针的效果;(3)疫苗接种计划的运作。疫苗类型进一步转化为“阿斯利康”、“辉瑞”、“科兴”和“混合”等属性,用于评估决定因素。在情感方面,疫苗加强针的效果和类型比计划运作主题的关联更强,经过博鲁塔特征选择并通过回归分析性能验证后,“辉瑞”和“混合”是推文情感的最强决定因素。本研究提供了一个从社交媒体检索和识别重要医疗保健主题的综合工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec1f/9222954/e4d486882cc7/healthcare-10-00994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验