Suppr超能文献

使用 Twitter 对阿斯利康/牛津、辉瑞/BioNTech 和莫德纳 COVID-19 疫苗进行情绪分析。

Using Twitter for sentiment analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 vaccines.

机构信息

University of Zagreb School of Medicine, Zagreb, Croatia.

Department of Internal Medicine, Division of Clinical Pharmacology and Therapeutics, Clinical Hospital Centre Zagreb and University of Zagreb Medical School, Zagreb, Croatia

出版信息

Postgrad Med J. 2022 Jul;98(1161):544-550. doi: 10.1136/postgradmedj-2021-140685. Epub 2021 Aug 9.

Abstract

INTRODUCTION

A worldwide vaccination campaign is underway to bring an end to the SARS-CoV-2 pandemic; however, its success relies heavily on the actual willingness of individuals to get vaccinated. Social media platforms such as Twitter may prove to be a valuable source of information on the attitudes and sentiment towards SARS-CoV-2 vaccination that can be tracked almost instantaneously.

MATERIALS AND METHODS

The Twitter academic Application Programming Interface was used to retrieve all English-language tweets mentioning AstraZeneca/Oxford, Pfizer/BioNTech and Moderna vaccines in 4 months from 1 December 2020 to 31 March 2021. Sentiment analysis was performed using the AFINN lexicon to calculate the daily average sentiment of tweets which was evaluated longitudinally and comparatively for each vaccine throughout the 4 months.

RESULTS

A total of 701 891 tweets have been retrieved and included in the daily sentiment analysis. The sentiment regarding Pfizer and Moderna vaccines appeared positive and stable throughout the 4 months, with no significant differences in sentiment between the months. In contrast, the sentiment regarding the AstraZeneca/Oxford vaccine seems to be decreasing over time, with a significant decrease when comparing December with March (p<0.0000000001, mean difference=-0.746, 95% CI=-0.915 to -0.577).

CONCLUSION

Lexicon-based Twitter sentiment analysis is a valuable and easily implemented tool to track the sentiment regarding SARS-CoV-2 vaccines. It is worrisome that the sentiment regarding the AstraZeneca/Oxford vaccine appears to be turning negative over time, as this may boost hesitancy rates towards this specific SARS-CoV-2 vaccine.

摘要

简介

一场全球性的疫苗接种运动正在进行,以结束 SARS-CoV-2 大流行;然而,其成功在很大程度上取决于个人实际接种疫苗的意愿。Twitter 等社交媒体平台可能成为追踪对 SARS-CoV-2 疫苗接种的态度和情绪的有价值信息来源,可以近乎即时地进行追踪。

材料和方法

使用 Twitter 学术应用程序接口,在 2020 年 12 月 1 日至 2021 年 3 月 31 日的 4 个月内检索了所有提到阿斯利康/牛津、辉瑞/BioNTech 和 Moderna 疫苗的英语推文。使用 AFINN 词汇表进行情感分析,计算推文的每日平均情绪,并在 4 个月内对每种疫苗进行纵向和比较评估。

结果

共检索到 701891 条推文,并纳入每日情感分析。辉瑞和 Moderna 疫苗的情绪似乎一直保持积极和稳定,各月之间的情绪差异无统计学意义。相比之下,阿斯利康/牛津疫苗的情绪似乎随着时间的推移而下降,与 12 月相比,3 月的情绪显著下降(p<0.0000000001,平均差异=-0.746,95%CI=-0.915 至-0.577)。

结论

基于词汇的 Twitter 情感分析是一种有价值且易于实施的工具,可以追踪对 SARS-CoV-2 疫苗的情感。令人担忧的是,阿斯利康/牛津疫苗的情绪似乎随着时间的推移而变得负面,这可能会增加人们对这种特定 SARS-CoV-2 疫苗的犹豫率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验