State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China.
Int J Mol Sci. 2022 Jun 14;23(12):6618. doi: 10.3390/ijms23126618.
The operation of mechanical equipment inevitably generates vibrations and noise, which are harmful to not only the human body but also to the equipment in use. Damping materials, which can convert mechanical energy into thermal energy, possess excellent damping properties in the glass transition region and can alleviate the problems caused by vibration and noise. However, these materials mainly rely on petroleum-based resources, and their glass transition temperatures () are lower than room temperature. Therefore, bio-based materials with high damping properties at room temperature must be designed for sustainable development. Herein, we demonstrate the fabrication of bio-based millable polyurethane (BMPU)/hindered phenol composites that could overcome the challenges of sustainable development and exhibit high damping properties at room temperature. BMPUs with a high were prepared from modified poly (lactic acid)-based polyols, the unsaturated chain extender trimethylolpropane diallylether, and 4,4'-diphenylmethane diisocyanate, and 3,9-Bis-{1,1-dimethyl-2[β-(3-tert-butyl-4-hydroxy-5-methylphenyl-)propionyloxy]ethyl}-2,4,8,10-tetraoxaspiro [5,5]-undecane (AO-80) was added to prepare BMPU/AO-80 composites. Finally, the properties of the BMPUs and BMPU/AO-80 composites were systematically evaluated. After adding 30 phr of AO-80, the Tg and maximum loss factor (tan δ) of BMPU/AO-80 composites increased from 7.8 °C to 13.5 °C and from 1.4 to 2.0, respectively. The tan δ showed an improvement of 43%. Compared with other polyurethanes, the prepared BMPU/AO-80 composites exhibited higher damping properties at room temperature. This study proposes a new strategy to reduce society's current dependence on fossil resources and design materials featuring high damping properties from sustainable raw materials.
机械设备的运行不可避免地会产生振动和噪声,这些不仅对人体有害,而且对正在使用的设备也有害。阻尼材料可以将机械能转化为热能,在玻璃化转变区域具有优异的阻尼性能,可以缓解振动和噪声问题。然而,这些材料主要依赖于石油基资源,其玻璃化转变温度()低于室温。因此,必须设计具有室温高阻尼性能的生物基材料以实现可持续发展。在这里,我们展示了生物基可加工型聚氨酯(BMPU)/受阻酚复合材料的制备,该复合材料可以克服可持续发展面临的挑战,并在室温下表现出高阻尼性能。通过改性聚(乳酸)基多元醇、不饱和链扩展剂三羟甲基丙烷二烯丙基醚和 4,4'-二苯基甲烷二异氰酸酯制备了具有高的 BMPU,添加 3,9-双-{1,1-二甲基-2-[β-(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基]乙基}-2,4,8,10-四氧杂螺 [5,5]-十一烷(AO-80)来制备 BMPU/AO-80 复合材料。最后,系统地评估了 BMPU 和 BMPU/AO-80 复合材料的性能。添加 30phr 的 AO-80 后,BMPU/AO-80 复合材料的 Tg 和最大损耗因子(tanδ)从 7.8°C 增加到 13.5°C 和从 1.4 增加到 2.0,分别。tanδ提高了 43%。与其他聚氨酯相比,所制备的 BMPU/AO-80 复合材料在室温下表现出更高的阻尼性能。本研究提出了一种新策略,以减少社会目前对化石资源的依赖,并设计出具有高阻尼性能的可持续原材料的材料。