文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Shape Deformation, Budding and Division of Giant Vesicles and Artificial Cells: A Review.

作者信息

Miele Ylenia, Holló Gábor, Lagzi István, Rossi Federico

机构信息

Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.

MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary.

出版信息

Life (Basel). 2022 Jun 6;12(6):841. doi: 10.3390/life12060841.


DOI:10.3390/life12060841
PMID:35743872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9224789/
Abstract

The understanding of the shape-change dynamics leading to the budding and division of artificial cells has gained much attention in the past few decades due to an increased interest in designing stimuli-responsive synthetic systems and minimal models of biological self-reproduction. In this respect, membranes and their composition play a fundamental role in many aspects related to the stability of the vesicles: permeability, elasticity, rigidity, tunability and response to external changes. In this review, we summarise recent experimental and theoretical work dealing with shape deformation and division of (giant) vesicles made of phospholipids and/or fatty acids membranes. Following a classic approach, we divide the strategies used to destabilise the membranes into two different types, physical (osmotic stress, temperature and light) and chemical (addition of amphiphiles, the addition of reactive molecules and pH changes) even though they often act in synergy when leading to a complete division process. Finally, we review the most important theoretical methods employed to describe the equilibrium shapes of giant vesicles and how they provide ways to explain and control the morphological changes leading from one equilibrium structure to another.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/63f1e7c6b5bd/life-12-00841-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/55fc7186186a/life-12-00841-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/4cddce6dec02/life-12-00841-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/94d505771b31/life-12-00841-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/34d0d285ce77/life-12-00841-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/94423b37295d/life-12-00841-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/ef3cea9fc977/life-12-00841-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/63f1e7c6b5bd/life-12-00841-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/55fc7186186a/life-12-00841-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/4cddce6dec02/life-12-00841-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/94d505771b31/life-12-00841-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/34d0d285ce77/life-12-00841-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/94423b37295d/life-12-00841-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/ef3cea9fc977/life-12-00841-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f5/9224789/63f1e7c6b5bd/life-12-00841-g007.jpg

相似文献

[1]
Shape Deformation, Budding and Division of Giant Vesicles and Artificial Cells: A Review.

Life (Basel). 2022-6-6

[2]
Effect of the Membrane Composition of Giant Unilamellar Vesicles on Their Budding Probability: A Trade-Off between Elasticity and Preferred Area Difference.

Life (Basel). 2021-6-29

[3]
Self-division of giant vesicles driven by an internal enzymatic reaction.

Chem Sci. 2020-3-4

[4]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[5]
Shape changes and budding of giant vesicles induced by an internal chemical trigger: an interplay between osmosis and pH change.

Phys Chem Chem Phys. 2021-2-25

[6]
Deformation of giant unilamellar vesicles under osmotic stress.

Colloids Surf B Biointerfaces. 2018-8-31

[7]
Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages.

Small. 2020-7

[8]
Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules.

Proc Natl Acad Sci U S A. 2012-4-2

[9]
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.

J Vis Exp. 2023-5-26

[10]
Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids.

Biophys J. 1992-2

引用本文的文献

[1]
Protocell Dynamics: Modelling Growth and Division of Lipid Vesicles Driven by an Autocatalytic Reaction.

Life (Basel). 2025-4-29

[2]
Dynamic flow control through active matter programming language.

Nat Mater. 2025-4

[3]
Models of Protocells Undergoing Asymmetrical Division.

Entropy (Basel). 2024-3-26

[4]
Shocker─A Molecular Dynamics Protocol and Tool for Accelerating and Analyzing the Effects of Osmotic Shocks.

J Chem Theory Comput. 2024-1-9

[5]
Membranous and Membraneless Interfaces-Origins of Artificial Cellular Complexity.

Life (Basel). 2023-7-20

[6]
Physical Concept to Explain the Regulation of Lipid Membrane Phase Separation under Isothermal Conditions.

Life (Basel). 2023-4-28

[7]
A Note on Vestigial Osmotic Pressure.

Membranes (Basel). 2023-3-14

[8]
Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles.

Pharmaceutics. 2022-12-12

[9]
Evolution of Proliferative Model Protocells Highly Responsive to the Environment.

Life (Basel). 2022-10-19

本文引用的文献

[1]
Synthesis of lipid membranes for artificial cells.

Nat Rev Chem. 2021-10

[2]
Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics.

Commun Chem. 2021-6-29

[3]
Protocells: Milestones and Recent Advances.

Small. 2022-5

[4]
Collective Behavior of Urease pH Clocks in Nano- and Microvesicles Controlled by Fast Ammonia Transport.

J Phys Chem Lett. 2022-3-3

[5]
Controlling Synthetic Cell-Cell Communication.

Front Mol Biosci. 2022-1-5

[6]
Synthetic cells in biomedical applications.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-3

[7]
A Monte Carlo study of giant vesicle morphologies in nonequilibrium environments.

Biophys J. 2021-10-19

[8]
Self-organized protein patterns: The MinCDE and ParABS systems.

Curr Opin Cell Biol. 2021-10

[9]
System concentration shift as a regulator of transcription-translation system within liposomes.

iScience. 2021-7-14

[10]
Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.

Nano Lett. 2021-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索