Hui-Teng Ng, Cheng-Yong Heah, Yun-Ming Liew, Abdullah Mohd Mustafa Al Bakri, Rojviriya Catleya, Razi Hasniyati Md, Garus Sebastian, Nabiałek Marcin, Sochacki Wojciech, Abidin Ilham Mukriz Zainal, Yong-Sing Ng, Śliwa Agata, Sandu Andrei Victor
Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia.
Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia.
Materials (Basel). 2022 Jun 8;15(12):4085. doi: 10.3390/ma15124085.
This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29-1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1-32.0 MPa for G-1 and 21.5-36.2 MPa for G-2) compared to G-0 (36.9-43.1 MPa) at 29-1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.
本文采用聚氧乙烯烷基醚硫酸盐(PAS)通过预发泡法形成泡沫,然后将其掺入基于粉煤灰和钢包炉渣的地质聚合物中。在文献中,仅研究了由单一前驱体制备的PAS-地质聚合物泡沫。因此,研究了在29 - 1000℃下有无PAS泡沫的粉煤灰-矿渣混合地质聚合物的性能。未发泡的地质聚合物(G-0)由钠碱、粉煤灰和矿渣混合制备。将PAS泡沫与浆料的比例设定为1.0和2.0以制备地质聚合物泡沫(G-1和G-2)。在29 - 1000℃下,与G-0(36.9 - 43.1MPa)相比,发泡地质聚合物的抗压强度降低(G-1为25.1 - 32.0MPa,G-2为21.5 - 36.2MPa)。然而,与未加热的样品相比,加热至1000℃时,G-0的抗压强度损失了8.7%,而发泡地质聚合物的抗压强度在1000℃时提高了68.5%。由于孔隙率增加、热导率降低和微观结构不致密,发泡地质聚合物的热稳定性大大提高,这有助于在水分蒸发过程中降低压力并减少劣化。