Suppr超能文献

基于面积变化算法的ODEP场中细胞自旋转速度的精确自动提取

Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm.

作者信息

Wu Haiyang, Dang Dan, Yang Xieliu, Wang Junhai, Qi Ruolong, Yang Wenguang, Liang Wenfeng

机构信息

School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.

School of Science, Shenyang Jianzhu University, Shenyang 110168, China.

出版信息

Micromachines (Basel). 2022 May 24;13(6):818. doi: 10.3390/mi13060818.

Abstract

Cells are complex biological units that can sense physicochemical stimuli from their surroundings and respond positively to them through characterization of the cell behavior. Thus, understanding the motions of cells is important for investigating their intrinsic properties and reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by determining the frequency of the cell area changes in all of the captured images. The algorithm is suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical images at different rotation angles when dealing with rotations of spherical and flat cells. In addition, the algorithm can be used to determine the motion trajectory of cells. The experimental results show that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm. Potential applications of the proposed algorithm include cell morphology extraction, cell classification, and characterization of the cell mechanical properties. The algorithm can be very helpful for those who are interested in using computer vision and artificial-intelligence-based ideology in single-cell studies, drug treatment, and other bio-related fields.

摘要

细胞是复杂的生物单元,能够感知周围的物理化学刺激,并通过表征细胞行为对其做出积极响应。因此,了解细胞的运动对于研究其内在特性和反映其各种状态至关重要。基于计算机视觉的阐明细胞行为的方法为准确提取细胞运动提供了一种新途径。在此,我们提出一种基于面积变化的算法,以自动提取光诱导介电泳场中细胞的自转。为了获得清晰完整的细胞结构轮廓,在预处理阶段使用了暗角去除和对比度拉伸技术。通过确定所有捕获图像中细胞面积变化的频率来计算自转速度。该算法适用于计算平面内和平面外的旋转,同时解决了处理球形和平坦细胞旋转时不同旋转角度下相同图像的问题。此外,该算法可用于确定细胞的运动轨迹。实验结果表明,该算法能够高效准确地计算出高达约155转/分钟的细胞旋转速度。所提出算法的潜在应用包括细胞形态提取、细胞分类以及细胞力学特性表征。该算法对于那些有兴趣在单细胞研究、药物治疗和其他生物相关领域中使用基于计算机视觉和人工智能理念的人可能会非常有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5020/9229272/007a01938f2d/micromachines-13-00818-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验