Suppr超能文献

用于骨组织工程的具有可控钙释放和间充质干细胞粘附功能的3D打印聚乳酸-生物玻璃支架

3D-Printed PLA-Bioglass Scaffolds with Controllable Calcium Release and MSC Adhesion for Bone Tissue Engineering.

作者信息

Schätzlein Eva, Kicker Christoph, Söhling Nicolas, Ritz Ulrike, Neijhoft Jonas, Henrich Dirk, Frank Johannes, Marzi Ingo, Blaeser Andreas

机构信息

Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany.

Technical University of Darmstadt, 64289 Darmstadt, Germany.

出版信息

Polymers (Basel). 2022 Jun 13;14(12):2389. doi: 10.3390/polym14122389.

Abstract

Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20%) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200-2000 µm) with adaptable mechanical properties (83-135 MPa). Additionally, controllable calcium release kinetics (0-0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.

摘要

大骨缺损通常采用自体移植和异体移植进行治疗,但这些方法存在诸多严重缺点,包括供应有限、供体部位发病风险以及可能的组织排斥反应。本研究旨在利用定制的丝状材料用于组织工程支架,以改善骨缺损的治疗。该丝状材料由可生物降解的聚乳酸(PLA)和不同含量(高达20%)的骨传导性S53P4生物玻璃组成。通过采用创新的增材制造技术,制备出了具有优化物理力学和生物学性能的支架。这些支架具有可调节的宏观和微观孔隙率(200 - 2000 µm)以及适应性的力学性能(83 - 135 MPa)。此外,还实现了可控的钙释放动力学(24小时后为0 - 0.25 nMol/µL)、可调节的间充质干细胞(MSC)黏附潜力(24小时后提高14倍)以及增殖能力(168小时后提高18倍)。3D打印过程在表面形成的微槽充当细胞聚集的核心,因此是形成球体或可能引导细胞的潜在细胞龛。具有可调节生物力学性能的支架设计以及具有抗菌特性的生物玻璃对于该研究成果的临床前转化尤为重要。本研究全面展示了3D打印生物玻璃复合支架在治疗临界尺寸骨缺损方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e47/9229101/4c577353c388/polymers-14-02389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验