Suppr超能文献

基于特征融合神经网络和动态少数类有偏批量加权损失函数的心电图心拍分类增强方法

Enhancing ECG Heartbeat classification with feature fusion neural networks and dynamic minority-biased batch weighting loss function.

机构信息

School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, People's Republic of China.

Department of Cardiovascular Ultrasound & Noninvasive Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China.

出版信息

Physiol Meas. 2024 Jul 10;45(7). doi: 10.1088/1361-6579/ad5cc0.

Abstract

This study aims to address the challenges of imbalanced heartbeat classification using electrocardiogram (ECG). In this proposed novel deep-learning method, the focus is on accurately identifying minority classes in conditions characterized by significant imbalances in ECG data.We propose a feature fusion neural network enhanced by a dynamic minority-biased batch weighting loss function. This network comprises three specialized branches: the complete ECG data branch for a comprehensive view of ECG signals, the local QRS wave branch for detailed features of the QRS complex, and thewave information branch to analyzewave characteristics. This structure is designed to extract diverse aspects of ECG data. The dynamic loss function prioritizes minority classes while maintaining the recognition of majority classes, adjusting the network's learning focus without altering the original data distribution. Together, this fusion structure and adaptive loss function significantly improve the network's ability to distinguish between various heartbeat classes, enhancing the accuracy of minority class identification.The proposed method demonstrated balanced performance within the MIT-BIH dataset, especially for minority classes. Under the intra-patient paradigm, the accuracy, sensitivity, specificity, and positive predictive value for Supraventricular ectopic beat were 99.63%, 93.62%, 99.81%, and 92.98%, respectively, and for Fusion beat were 99.76%, 85.56%, 99.87%, and 84.16%, respectively. Under the inter-patient paradigm, these metrics were 96.56%, 89.16%, 96.84%, and 51.99%for Supraventricular ectopic beat, and 96.10%, 77.06%, 96.25%, and 13.92%for Fusion beat, respectively.This method effectively addresses the class imbalance in ECG datasets. By leveraging diverse ECG signal information and a novel loss function, this approach offers a promising tool for aiding in the diagnosis and treatment of cardiac conditions.

摘要

本研究旨在解决心电图(ECG)中不平衡心跳分类的挑战。在这个提出的新的深度学习方法中,重点是在 ECG 数据中存在显著不平衡的情况下准确识别少数类。

我们提出了一种基于动态少数偏见批加权损失函数增强的特征融合神经网络。该网络由三个专门的分支组成:完整的 ECG 数据分支用于全面观察 ECG 信号,局部 QRS 波分支用于 QRS 复合的详细特征,以及 wave 信息分支用于分析 wave 特征。该结构旨在提取 ECG 数据的多个方面。动态损失函数优先考虑少数类,同时保持对多数类的识别,调整网络的学习重点,而不改变原始数据分布。这种融合结构和自适应损失函数的结合,显著提高了网络区分各种心跳类别的能力,增强了少数类别的识别准确性。

该方法在 MIT-BIH 数据集内表现出平衡的性能,特别是对于少数类。在患者内范例下,对室上性异位搏动的准确度、敏感度、特异性和阳性预测值分别为 99.63%、93.62%、99.81%和 92.98%,对融合搏动的准确度、敏感度、特异性和阳性预测值分别为 99.76%、85.56%、99.87%和 84.16%。在患者间范例下,这些指标分别为室上性异位搏动的 96.56%、89.16%、96.84%和 51.99%,以及融合搏动的 96.10%、77.06%、96.25%和 13.92%。

该方法有效地解决了 ECG 数据集的类不平衡问题。通过利用多样化的 ECG 信号信息和新颖的损失函数,该方法为辅助心脏疾病的诊断和治疗提供了一种有前途的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验