Dollery Stephen J, Harro Janette M, Wiggins Taralyn J, Wille Brendan P, Kim Peter C, Tobin John K, Bushnell Ruth V, Tasker Naomi J P E R, MacLeod David A, Tobin Gregory J
Biological Mimetics, Inc., Frederick, MD 21702, USA.
Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.
Vaccines (Basel). 2022 May 24;10(6):833. doi: 10.3390/vaccines10060833.
Many microbes of concern to human health remain without vaccines. We have developed a whole-microbe inactivation technology that enables us to rapidly inactivate large quantities of a pathogen while retaining epitopes that were destroyed by previous inactivation methods. The method that we call UVC-MDP inactivation can be used to make whole-cell vaccines with increased potency. We and others are exploring the possibility of using improved irradiation-inactivation technologies to develop whole-cell vaccines for numerous antibiotic-resistant microbes. Here, we apply UVC-MDP to produce candidate MRSA vaccines which we test in a stringent tibia implant model of infection challenged with a virulent MSRA strain. We report high levels of clearance in the model and observe a pattern of protection that correlates with the immunogen protein profile used for vaccination.
许多对人类健康构成威胁的微生物仍然没有疫苗。我们开发了一种全微生物灭活技术,使我们能够快速灭活大量病原体,同时保留被先前灭活方法破坏的表位。我们称之为UVC-MDP灭活的方法可用于生产效力增强的全细胞疫苗。我们和其他人正在探索使用改进的辐射灭活技术为多种抗生素耐药微生物开发全细胞疫苗的可能性。在这里,我们应用UVC-MDP来生产候选耐甲氧西林金黄色葡萄球菌(MRSA)疫苗,并在一个用强毒MRSA菌株攻击的严格的胫骨植入感染模型中对其进行测试。我们报告了该模型中的高清除率,并观察到一种与用于疫苗接种的免疫原蛋白谱相关的保护模式。