Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China.
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
Plant Cell Environ. 2022 Sep;45(9):2810-2826. doi: 10.1111/pce.14384. Epub 2022 Jul 6.
Iron (Fe) deficiency is a nutritional stress in plants that commonly occurs in alkaline and calcareous soils. Mitogen-activated protein kinases (MPKs), the terminal player of MAPK cascade, are involved in distinct physiological processes. Once plants suffer from Fe deficiency stress, the mechanism of MPK function remains unclear owing to limited study on the MPK networks including substrate proteins and downstream pathways. Here, the MAP kinase MPK4-1 was induced in roots of Fe efficient apple rootstock Malus xiaojinensis but not in Fe inefficient rootstock Malus baccata under Fe deficiency conditions. Overexpression of MxMPK4-1 in apple calli and apple roots enhanced the responses to Fe deficiency. We found that MxMPK4-1 interacted with NADPH oxidases (NOX)-respiratory burst oxidase homologs MxRBOHD1 and MxRBOHD2, which positively regulated responses to Fe deficiency. Moreover, MxMPK4-1 phosphorylated the C terminus of MxRBOHD2 at Ser797 and Ser906 and positively and negatively regulated NOX activity through these phospho-sites, respectively. When compared with apple calli that overexpressed MxRBOHD2, the coexpression of MxMPK4-1 and MxRBOHD2 prominently enhanced the Fe deficiency responses. We also demonstrated that hydrogen peroxide derived from MxMPK4-1-MxRBOHD2 regulated the MxMPK6-2-MxbHLH104 pathway, illuminating a systematic network that involves different MPK proteins in M. xiaojinensis under Fe deficiency stress.
铁(Fe)缺乏是植物在碱性和石灰性土壤中常见的营养胁迫。丝裂原活化蛋白激酶(MPKs)是 MAPK 级联的末端参与者,参与不同的生理过程。一旦植物受到 Fe 缺乏胁迫,由于对包括底物蛋白和下游途径在内的 MPK 网络的研究有限,MPK 功能的机制仍不清楚。在这里,在 Fe 有效苹果砧木小金海棠根中诱导了 MAP 激酶 MPK4-1,但在 Fe 低效砧木山荆子根中没有诱导。在苹果愈伤组织和苹果根中过表达 MxMPK4-1 增强了对 Fe 缺乏的反应。我们发现 MxMPK4-1 与 NADPH 氧化酶(NOX)-呼吸爆发氧化酶同源物 MxRBOHD1 和 MxRBOHD2 相互作用,这些蛋白正向调节对 Fe 缺乏的反应。此外,MxMPK4-1 在 Ser797 和 Ser906 处磷酸化 MxRBOHD2 的 C 端,并通过这些磷酸化位点分别正向和负向调节 NOX 活性。与过表达 MxRBOHD2 的苹果愈伤组织相比,共表达 MxMPK4-1 和 MxRBOHD2 显著增强了对 Fe 缺乏的反应。我们还证明,来自 MxMPK4-1-MxRBOHD2 的过氧化氢调节了 MxMPK6-2-MxbHLH104 途径,阐明了一个系统网络,该网络涉及小金海棠在 Fe 缺乏胁迫下的不同 MPK 蛋白。